Self-Supervised depth kalilia

Overview

Self-Supervised-depth

by kalilia.

Contents

0-depth-estimation-overview

Conference Tittle code Author mark note
Single Image Depth Estimation: An Overview Istanbul Technical University πŸ™‰

*-datasets

Tittle yaer mark note
Vision meets Robotics: The KITTI Dataset 2012 Karlsruhe Institute of Technology
nuScenes: A multimodal dataset for autonomous driving 2018 nuTonomy: an APTIV company

1-Monocular-depth with Cost Volume

Conference Tittle code Author mark note
NIPS2020 Forget About the LiDAR: Self-Supervised Depth Estimators with MED Probability Volumes Korea Advanced Institute of Science and Technology πŸ™‰ link
CVPR2021 DRO: Deep Recurrent Optimizer for Structure-from-Motion Alibaba A.I. Labs πŸ™ˆ link
CVPR2021 The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth link Niantic πŸ™ˆ
CVPR2020 Self-supervised Monocular Trained Depth Estimation using Self-attention and Discrete Disparity Volume link Australian Institute for Machine Learning πŸ™ˆ
ECCV2020 Feature-metric Loss for Self-supervised Learning of Depth and Egomotion link πŸ™ˆ

2-Mono-SfM

2017

Conference Tittle code Author mark note
CVPR2017 Semi-Supervised Deep Learning for Monocular Depth Map Prediction RWTH Aachen University πŸ™ˆ
CVPR2017 SfMLearner: Unsupervised Learning of Depth and Ego-Motion from Video link UC Berkeley ⭐ link

2018

Conference Tittle code Author mark note
CVPR2018 DVO: Learning Depth from Monocular Videos using Direct Methods Carnegie Mellon University πŸ™ˆ
CVPR2018 GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose link SenseTime Research πŸ™ˆ
ECCV2018 DF-Net: Unsupervised Joint Learning of Depth and Flow using Cross-Task Consistency ) Virginia Tech πŸ™ˆ
ECCV2018 Supervising the new with the old: learning SFM from SFM ) University of Oxford πŸ™ˆ

2019

Conference Tittle code Author mark note
2019 Self-Supervised 3D Keypoint Learning for Ego-motion Estimation Toyota Research Institute (TRI) πŸ™ˆ
ICRA2019 SuperDepth: Self-Supervised, Super-Resolved Monocular Depth Estimation Toyota Research Institute (TRI) πŸ™ˆ
AAAI2019 Depth prediction without the sensors: Leveraging structure for unsupervised learning from monocular videos Harvard University/Google Brain πŸ™ˆ
ICCV2019 Unsupervised High-Resolution Depth Learning From Videos With Dual Networks Tsinghua University πŸ™ˆ
ICCV2019 Self-Supervised Monocular Depth Hints link Niantic πŸ™ˆ
ICCV2019 Monodepth2: Digging into self-supervised monocular depth estimation link UCL/niantic 🌟
NIPS2019 SC-SfMLearner: Unsupervised scale-consistent depth and ego-motion learning from monocular video University of Adelaide, Australia πŸ™ˆ
CVPR2019 Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation Max Planck Institute for Intelligent Systems πŸ™ˆ
CoRL2019 Robust Semi-Supervised Monocular Depth Estimation with Reprojected Distances Toyota Research Institute (TRI) πŸ™ˆ

2020

Conference Tittle code Author mark note
ECCV2020 DeepSFM: Structure From Motion Via Deep Bundle Adjustment Fudan University πŸ™ˆ
CoRL2020 Unsupervised Monocular Depth Learning in Dynamic Scenes Google Research πŸ™ˆ
CoRL2020 Attentional Separation-and-Aggregation Network for Self-supervised Depth-Pose Learning in Dynamic Scenes Tsinghua University πŸ™‰
3DV2020 Neural Ray Surfaces for Self-Supervised Learning of Depth and Ego-motion Toyota Research Institute (TRI)
ICLR2020 Semantically-Guided Representation Learning for Self-Supervised Monocular Depth Toyota Research Institute (TRI)
CVPR2020 On the uncertainty of self-supervised monocular depth estimation link University of Bologna, Italy πŸ™ˆ
CVPR2020 Towards Better Generalization: Joint Depth-Pose Learning without PoseNet link Tsinghua University πŸ™ˆ link
CVPR2020 3D Packing for Self-Supervised Monocular Depth Estimation Toyota Research Institute (TRI) 🌟 link
CVPR2020 Self-supervised monocular trained depth estimation using self-attention and discrete disparity volume University of Adelaide πŸ™ˆ
2020 SAFENet: Self-Supervised Monocular Depth Estimation with Semantic-Aware Feature Extraction link Toyota Research Institute (TRI) πŸ™ˆ
2020 Self-Supervised Monocular Depth Estimation : Solving the Dynamic Object Problem by Semantic Guidance Technische UniversitΒ¨at Braunschweig, Germany πŸ™ˆ
IROS2020 Toward Hierarchical Self-Supervised Monocular Absolute Depth Estimation for Autonomous Driving Applications link Tongji University πŸ™ˆ

2021

Conference Tittle code Author mark note
AAAI2021 HR-Depth : High Resolution Self-Supervised Monocular Depth Estimation link Zhejiang University ⭐ link
AAAI2021 Learning Monocular Depth in Dynamic Scenes via Instance-Aware Projection Consistency KAIST ⭐ link
CVPR2021 Manydepth:The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth link Niantic πŸ™ˆ
CVPR2021 MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera link TUM πŸ™ˆ
IROS2021 Self-Supervised Scale Recovery for Monocular Depth and Egomotion Estimation University of Toronto πŸ™ˆ
2021 Self-supervised Depth Estimation Leveraging Global Perception and Geometric Smoothness Using On-board Videos Hong Kong Polytechnic University πŸ™ˆ
2021 Self-Supervised Structure-from-Motion through Tightly-Coupled Depth and Egomotion Networks University of Toronto πŸ™ˆ
2021 Moving SLAM: Fully Unsupervised Deep Learning in Non-Rigid Scenes HKUST πŸ™ˆ
2021 Unsupervised Joint Learning of Depth, Optical Flow, Ego-motion from Video Tongji University πŸ™ˆ
2021 Monocular Depth Estimation through Virtual-world Supervision and Real-world SfM Self-Supervision πŸ™ˆ
2021 Self-Supervised Learning of Depth and Ego- Motion from Video by Alternative Training and Geometric Constraints from 3D to 2D πŸ™ˆ
-update-time-09-13-2021-
ICCV2021 Fine-grained Semantics-aware Representation Enhancement for Self-supervised Monocular Depth Estimation Seoul National University πŸ™ˆ
ICCV2021 Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark Nanjing University of Science and Technology πŸ™ˆ
ICCV2021 Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation Zhejiang University πŸ™ˆ
ICCV2021 StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation Shanghai Jiao Tong University πŸ™ˆ
ICCV2021 MonoIndoor: Towards Good Practice of Self-Supervised Monocular Depth Estimation for Indoor Environments OPPO US Research Center πŸ™ˆ
Sensors Journal 2021 Unsupervised Monocular Depth Perception: Focusing on Moving Objects Chinese University of Hong Kong πŸ™ˆ
2021 R4Dyn: Exploring Radar for Self-Supervised Monocular Depth Estimation of Dynamic Scenes TUM ⭐
2021 Unsupervised Monocular Depth Estimation in Highly Complex Environments East China University of Science and Technology πŸ™ˆ

3-Multi-view-stereo

Conference Tittle code Author mark
PAMI2008 SGM:Stereo processing by Semi-Global matching and Mutual Information German Aerospace Cente πŸ™ˆ
ECCV2016 Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue University of Adelaide πŸ™ˆ
CVPR2017 DispNet: Unsupervised Monocular Depth Estimation with Left-Right Consistency University College London πŸ™ˆ
Cost Volume Pyramid Based Depth Inference for Multi-View Stereo Jiayu link Northwestern Polytechnical University πŸ™ˆ
CVPR2020 Semi-Supervised Deep Learning for Monocular Depth Map Prediction Australian National University πŸ™ˆ
AAAI2021 Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation South China University of Technology πŸ™ˆ
CVPR2021 Differentiable Diffusion for Dense Depth Estimation from Multi-view Images Brown University πŸ™ˆ
ICCV2021 NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Australian National University ⭐

4-SLAM-Visual-Odometry

Conference Tittle code Author mark
ECCV2014 LSD-SLAM: Large-Scale Direct Monocular SLAM TUM πŸ™ˆ
TR2015 ORB-SLAM: A Versatile and Accurate Monocular SLAM System Universidad de Zaragoza πŸ™ˆ
2016 Direct Visual Odometry using Bit-Planes Carnegie Mellon University πŸ™ˆ
TR2017 ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras Universidad de Zaragoza πŸ™ˆ
2016 A Photometrically Calibrated Benchmark For Monocular Visual Odometry TUM πŸ™ˆ

2018

Conference Tittle code Author mark
PAMI2018 DSO: Direct Sparse Odometry TUM πŸ™ˆ
IROS2018 LDSO: Direct Sparse Odometry with Loop Closure TUM πŸ™ˆ
ECCV2018 Deep Virtual Stereo Odometry:Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry TUM πŸ™ˆ
2018 Self-improving visual odometry Magic Leap, Inc. πŸ™ˆ

2019

Conference Tittle code Author mark
ICLR2019 BA-NET: DENSE BUNDLE ADJUSTMENT NETWORKS Simon Fraser University πŸ™ˆ
TartanVO: A Generalizable Learning-based VO link Carnegie Mellon University πŸ™ˆ
IROS D2VO: Monocular Deep Direct Visual Odometry πŸ™ˆ

2020

Conference Tittle code Author mark
ECCV2020 Pseudo RGB-D for Self-Improving Monocular SLAM and Depth Prediction IIIT-Delhi πŸ™ˆ
CVPR2020 VOLDOR: Visual Odometry from Log-logistic Dense Optical flow Residuals Stevens Institute of Technology πŸ™ˆ
2021 Generalizing to the Open World: Deep Visual Odometry with Online Adaptation Peking University πŸ™ˆ
ICRA2021 SA-LOAM: Semantic-aided LiDAR SLAM with Loop Closure Zhejiang University πŸ™ˆ

Light-Filed-based-depth

Conference Tittle code Author mark
TPAMI2021 Revisiting Light Field Rendering with Deep Anti-Aliasing Neural Network Northeastern University πŸ™ˆ
CVPR2021 Differentiable Diffusion for Dense Depth Estimation from Multi-view Images Brown University πŸ™ˆ
IROS2021 Unsupervised Learning of Depth Estimation and Visual Odometry for Sparse Light Field Cameras Brown University πŸ™ˆ
2021 Occlusion-aware Unsupervised Learning of Depth from 4-D Light Fields University of Sydney πŸ™ˆ

6-depth-estimation-and-complementation

Conference Tittle code Author mark
Sparse Auxiliary Networks for Unified Monocular Depth Prediction and Completion Vitor Toyota Research Institute (TRI) πŸ™ˆ
3DV2019 Enhancing self-supervised monocular depth estimation with traditional visual odometry Univrses AB πŸ™ˆ
ECCV2020 S3Net: Semantic-aware self-supervised depth estimation with monocular videos and synthetic data UCSD πŸ™ˆ
Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images

Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images This repository contains the implementation of the following paper

Seonggwan Ko 9 Jul 30, 2022
UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities

Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.

Microsoft 7.6k Jan 01, 2023
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal

Meta Research 309 Dec 16, 2022
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
Using machine learning to predict undergrad college admissions.

College-Prediction Project- Overview: Many have tried, many have failed. Few trailblazers are ambitious enought to chase acceptance into the top 15 un

John H Klinges 1 Jan 05, 2022
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this

Tong Zekun 28 Jan 08, 2023
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
A collection of implementations of deep domain adaptation algorithms

Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise

Yongchun Zhu 647 Jan 03, 2023
PyTorch Implementation of Sparse DETR

Sparse DETR By Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, and Saehoon Kim at Kakao Brain. (*: Equal contribution) This repository is an official im

Kakao Brain 113 Dec 28, 2022
Implement A3C for Mujoco gym envs

pytorch-a3c-mujoco Disclaimer: my implementation right now is unstable (you ca refer to the learning curve below), I'm not sure if it's my problems. A

Andrew 70 Dec 12, 2022
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
Reverse engineer your pytorch vision models, in style

πŸ” Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022
Contenido del curso Bases de datos del DCC PUC versiΓ³n 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro PolΓ­tica de integrid

54 Nov 23, 2022