Self-Supervised depth kalilia

Overview

Self-Supervised-depth

by kalilia.

Contents

0-depth-estimation-overview

Conference Tittle code Author mark note
Single Image Depth Estimation: An Overview Istanbul Technical University πŸ™‰

*-datasets

Tittle yaer mark note
Vision meets Robotics: The KITTI Dataset 2012 Karlsruhe Institute of Technology
nuScenes: A multimodal dataset for autonomous driving 2018 nuTonomy: an APTIV company

1-Monocular-depth with Cost Volume

Conference Tittle code Author mark note
NIPS2020 Forget About the LiDAR: Self-Supervised Depth Estimators with MED Probability Volumes Korea Advanced Institute of Science and Technology πŸ™‰ link
CVPR2021 DRO: Deep Recurrent Optimizer for Structure-from-Motion Alibaba A.I. Labs πŸ™ˆ link
CVPR2021 The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth link Niantic πŸ™ˆ
CVPR2020 Self-supervised Monocular Trained Depth Estimation using Self-attention and Discrete Disparity Volume link Australian Institute for Machine Learning πŸ™ˆ
ECCV2020 Feature-metric Loss for Self-supervised Learning of Depth and Egomotion link πŸ™ˆ

2-Mono-SfM

2017

Conference Tittle code Author mark note
CVPR2017 Semi-Supervised Deep Learning for Monocular Depth Map Prediction RWTH Aachen University πŸ™ˆ
CVPR2017 SfMLearner: Unsupervised Learning of Depth and Ego-Motion from Video link UC Berkeley ⭐ link

2018

Conference Tittle code Author mark note
CVPR2018 DVO: Learning Depth from Monocular Videos using Direct Methods Carnegie Mellon University πŸ™ˆ
CVPR2018 GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose link SenseTime Research πŸ™ˆ
ECCV2018 DF-Net: Unsupervised Joint Learning of Depth and Flow using Cross-Task Consistency ) Virginia Tech πŸ™ˆ
ECCV2018 Supervising the new with the old: learning SFM from SFM ) University of Oxford πŸ™ˆ

2019

Conference Tittle code Author mark note
2019 Self-Supervised 3D Keypoint Learning for Ego-motion Estimation Toyota Research Institute (TRI) πŸ™ˆ
ICRA2019 SuperDepth: Self-Supervised, Super-Resolved Monocular Depth Estimation Toyota Research Institute (TRI) πŸ™ˆ
AAAI2019 Depth prediction without the sensors: Leveraging structure for unsupervised learning from monocular videos Harvard University/Google Brain πŸ™ˆ
ICCV2019 Unsupervised High-Resolution Depth Learning From Videos With Dual Networks Tsinghua University πŸ™ˆ
ICCV2019 Self-Supervised Monocular Depth Hints link Niantic πŸ™ˆ
ICCV2019 Monodepth2: Digging into self-supervised monocular depth estimation link UCL/niantic 🌟
NIPS2019 SC-SfMLearner: Unsupervised scale-consistent depth and ego-motion learning from monocular video University of Adelaide, Australia πŸ™ˆ
CVPR2019 Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation Max Planck Institute for Intelligent Systems πŸ™ˆ
CoRL2019 Robust Semi-Supervised Monocular Depth Estimation with Reprojected Distances Toyota Research Institute (TRI) πŸ™ˆ

2020

Conference Tittle code Author mark note
ECCV2020 DeepSFM: Structure From Motion Via Deep Bundle Adjustment Fudan University πŸ™ˆ
CoRL2020 Unsupervised Monocular Depth Learning in Dynamic Scenes Google Research πŸ™ˆ
CoRL2020 Attentional Separation-and-Aggregation Network for Self-supervised Depth-Pose Learning in Dynamic Scenes Tsinghua University πŸ™‰
3DV2020 Neural Ray Surfaces for Self-Supervised Learning of Depth and Ego-motion Toyota Research Institute (TRI)
ICLR2020 Semantically-Guided Representation Learning for Self-Supervised Monocular Depth Toyota Research Institute (TRI)
CVPR2020 On the uncertainty of self-supervised monocular depth estimation link University of Bologna, Italy πŸ™ˆ
CVPR2020 Towards Better Generalization: Joint Depth-Pose Learning without PoseNet link Tsinghua University πŸ™ˆ link
CVPR2020 3D Packing for Self-Supervised Monocular Depth Estimation Toyota Research Institute (TRI) 🌟 link
CVPR2020 Self-supervised monocular trained depth estimation using self-attention and discrete disparity volume University of Adelaide πŸ™ˆ
2020 SAFENet: Self-Supervised Monocular Depth Estimation with Semantic-Aware Feature Extraction link Toyota Research Institute (TRI) πŸ™ˆ
2020 Self-Supervised Monocular Depth Estimation : Solving the Dynamic Object Problem by Semantic Guidance Technische UniversitΒ¨at Braunschweig, Germany πŸ™ˆ
IROS2020 Toward Hierarchical Self-Supervised Monocular Absolute Depth Estimation for Autonomous Driving Applications link Tongji University πŸ™ˆ

2021

Conference Tittle code Author mark note
AAAI2021 HR-Depth : High Resolution Self-Supervised Monocular Depth Estimation link Zhejiang University ⭐ link
AAAI2021 Learning Monocular Depth in Dynamic Scenes via Instance-Aware Projection Consistency KAIST ⭐ link
CVPR2021 Manydepth:The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth link Niantic πŸ™ˆ
CVPR2021 MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera link TUM πŸ™ˆ
IROS2021 Self-Supervised Scale Recovery for Monocular Depth and Egomotion Estimation University of Toronto πŸ™ˆ
2021 Self-supervised Depth Estimation Leveraging Global Perception and Geometric Smoothness Using On-board Videos Hong Kong Polytechnic University πŸ™ˆ
2021 Self-Supervised Structure-from-Motion through Tightly-Coupled Depth and Egomotion Networks University of Toronto πŸ™ˆ
2021 Moving SLAM: Fully Unsupervised Deep Learning in Non-Rigid Scenes HKUST πŸ™ˆ
2021 Unsupervised Joint Learning of Depth, Optical Flow, Ego-motion from Video Tongji University πŸ™ˆ
2021 Monocular Depth Estimation through Virtual-world Supervision and Real-world SfM Self-Supervision πŸ™ˆ
2021 Self-Supervised Learning of Depth and Ego- Motion from Video by Alternative Training and Geometric Constraints from 3D to 2D πŸ™ˆ
-update-time-09-13-2021-
ICCV2021 Fine-grained Semantics-aware Representation Enhancement for Self-supervised Monocular Depth Estimation Seoul National University πŸ™ˆ
ICCV2021 Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark Nanjing University of Science and Technology πŸ™ˆ
ICCV2021 Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation Zhejiang University πŸ™ˆ
ICCV2021 StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation Shanghai Jiao Tong University πŸ™ˆ
ICCV2021 MonoIndoor: Towards Good Practice of Self-Supervised Monocular Depth Estimation for Indoor Environments OPPO US Research Center πŸ™ˆ
Sensors Journal 2021 Unsupervised Monocular Depth Perception: Focusing on Moving Objects Chinese University of Hong Kong πŸ™ˆ
2021 R4Dyn: Exploring Radar for Self-Supervised Monocular Depth Estimation of Dynamic Scenes TUM ⭐
2021 Unsupervised Monocular Depth Estimation in Highly Complex Environments East China University of Science and Technology πŸ™ˆ

3-Multi-view-stereo

Conference Tittle code Author mark
PAMI2008 SGM:Stereo processing by Semi-Global matching and Mutual Information German Aerospace Cente πŸ™ˆ
ECCV2016 Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue University of Adelaide πŸ™ˆ
CVPR2017 DispNet: Unsupervised Monocular Depth Estimation with Left-Right Consistency University College London πŸ™ˆ
Cost Volume Pyramid Based Depth Inference for Multi-View Stereo Jiayu link Northwestern Polytechnical University πŸ™ˆ
CVPR2020 Semi-Supervised Deep Learning for Monocular Depth Map Prediction Australian National University πŸ™ˆ
AAAI2021 Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation South China University of Technology πŸ™ˆ
CVPR2021 Differentiable Diffusion for Dense Depth Estimation from Multi-view Images Brown University πŸ™ˆ
ICCV2021 NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Australian National University ⭐

4-SLAM-Visual-Odometry

Conference Tittle code Author mark
ECCV2014 LSD-SLAM: Large-Scale Direct Monocular SLAM TUM πŸ™ˆ
TR2015 ORB-SLAM: A Versatile and Accurate Monocular SLAM System Universidad de Zaragoza πŸ™ˆ
2016 Direct Visual Odometry using Bit-Planes Carnegie Mellon University πŸ™ˆ
TR2017 ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras Universidad de Zaragoza πŸ™ˆ
2016 A Photometrically Calibrated Benchmark For Monocular Visual Odometry TUM πŸ™ˆ

2018

Conference Tittle code Author mark
PAMI2018 DSO: Direct Sparse Odometry TUM πŸ™ˆ
IROS2018 LDSO: Direct Sparse Odometry with Loop Closure TUM πŸ™ˆ
ECCV2018 Deep Virtual Stereo Odometry:Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry TUM πŸ™ˆ
2018 Self-improving visual odometry Magic Leap, Inc. πŸ™ˆ

2019

Conference Tittle code Author mark
ICLR2019 BA-NET: DENSE BUNDLE ADJUSTMENT NETWORKS Simon Fraser University πŸ™ˆ
TartanVO: A Generalizable Learning-based VO link Carnegie Mellon University πŸ™ˆ
IROS D2VO: Monocular Deep Direct Visual Odometry πŸ™ˆ

2020

Conference Tittle code Author mark
ECCV2020 Pseudo RGB-D for Self-Improving Monocular SLAM and Depth Prediction IIIT-Delhi πŸ™ˆ
CVPR2020 VOLDOR: Visual Odometry from Log-logistic Dense Optical flow Residuals Stevens Institute of Technology πŸ™ˆ
2021 Generalizing to the Open World: Deep Visual Odometry with Online Adaptation Peking University πŸ™ˆ
ICRA2021 SA-LOAM: Semantic-aided LiDAR SLAM with Loop Closure Zhejiang University πŸ™ˆ

Light-Filed-based-depth

Conference Tittle code Author mark
TPAMI2021 Revisiting Light Field Rendering with Deep Anti-Aliasing Neural Network Northeastern University πŸ™ˆ
CVPR2021 Differentiable Diffusion for Dense Depth Estimation from Multi-view Images Brown University πŸ™ˆ
IROS2021 Unsupervised Learning of Depth Estimation and Visual Odometry for Sparse Light Field Cameras Brown University πŸ™ˆ
2021 Occlusion-aware Unsupervised Learning of Depth from 4-D Light Fields University of Sydney πŸ™ˆ

6-depth-estimation-and-complementation

Conference Tittle code Author mark
Sparse Auxiliary Networks for Unified Monocular Depth Prediction and Completion Vitor Toyota Research Institute (TRI) πŸ™ˆ
3DV2019 Enhancing self-supervised monocular depth estimation with traditional visual odometry Univrses AB πŸ™ˆ
ECCV2020 S3Net: Semantic-aware self-supervised depth estimation with monocular videos and synthetic data UCSD πŸ™ˆ
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Pytorch and Torch testing code of CartoonGAN

CartoonGAN-Test-Pytorch-Torch Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors,

Yijun Li 642 Dec 27, 2022
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

Kexin Huang 49 Oct 15, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

Yuhan Liu 24 Nov 29, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
Improving 3D Object Detection with Channel-wise Transformer

"Improving 3D Object Detection with Channel-wise Transformer" Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v

Hualian Sheng 107 Dec 20, 2022
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

GCNet for Object Detection By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu. This repo is a official implementation of "GCNet: Non-local Networ

Jerry Jiarui XU 1.1k Dec 29, 2022
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network

Leaded Gradient Method (LGM) This repository contains the PyTorch implementation for paper Dynamics-aware Adversarial Attack of 3D Sparse Convolution

An Tao 2 Oct 18, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
Language model Prompt And Query Archive

LPAQA: Language model Prompt And Query Archive This repository contains data and code for the paper How Can We Know What Language Models Know? Install

127 Dec 20, 2022