RodoSol-ALPR Dataset

Overview

RodoSol-ALPR Dataset

This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Rodovia do Sol (RodoSol) concessionaire, which operates 67.5 kilometers of a highway (ES-060) in the Brazilian state of Espírito Santo. It has been introduced in our VISAPP paper (To appear).

There are images of different types of vehicles (e.g., cars, motorcycles, buses and trucks), captured during the day and night, from distinct lanes, on clear and rainy days, and the distance from the vehicle to the camera varies slightly. All images have a resolution of 1,280 × 720 pixels.

An important feature of the proposed dataset is that it has images of two different LP layouts: Brazilian and Mercosur (to maintain consistency with previous works, we refer to “Brazilian” as the standard used in Brazil before the adoption of the Mercosur standard). All Brazilian LPs consist of three letters followed by four digits, while the initial pattern adopted in Brazil for Mercosur LPs consists of 3 letters, 1 digit, 1 letter and 2 digits, in that order. In both layouts, car LPs have the seven characters arranged in one row, whereas motorcycle LPs have three characters in one row and four characters in another. Even though these LP layouts are very similar in shape and size, there are considerable differences in their colors and also in the font of the characters.

Here are some examples from the dataset:

Note: we show a zoomed-in version of the vehicle’s LP in the bottom right corner of the images in the last column for better viewing of the LP layouts.

The 20,000 images are divided as follows: 5,000 images of cars with Brazilian LPs; 5,000 images of motorcycles with Brazilian LPs; 5,000 images of cars with Mercosur LPs; and 5,000 images of motorcycles with Mercosur LPs. For the sake of simplicity of definitions, here “car” refers to any vehicle with four wheels or more (e.g., passenger cars, vans, buses, trucks, among others), while “motorcycle” refers to both motorcycles and motorized tricycles.

We randomly split the RodoSol-ALPR dataset as follows: 8,000 images for training, 8,000 images for testing and 4,000 images for validation, following the split protocol (i.e., 40%/40%/20%) adopted in the SSIG-SegPlate and UFPR-ALPR datasets. We preserved the percentage of samples for each vehicle type and LP layout, for example, there are 2,000 images of cars with Brazilian LPs in each of the training and test sets, and 1,000 images in the validation one. For reproducibility purposes, the subsets generated are explicitly available along with the proposed dataset.

Every image has the following information available in a text file: the vehicle’s type (car or motorcycle), the LP’s layout (Brazilian or Mercosul), its text (e.g., ABC-1234), and the position (x, y) of each of its four corners. We labeled the corners instead of just the LP bounding box to enable the training of methods that explore LP rectification, as well as the application of a wider range of data augmentation techniques.

Regarding privacy concerns related to our dataset, we remark that in Brazil the LPs are related to the respective vehicles, i.e., no public information is available about the vehicle drivers/owners. Moreover, all human faces (e.g., drivers or RodoSol’s employees) were manually redacted (i.e., blurred) in each image.

How to obtain the Dataset

The RodoSol-ALPR dataset is released for academic research only and is free to researchers from educational or research institutes for non-commercial purposes.

To be able to download the dataset, please read carefully this license agreement, fill it out and send it back to the first author ([email protected]). Your e-mail must be sent from a valid university account (.edu, .ac or similar).

In general, a download link will take 1-3 business days to issue. Failure to follow the instructions may result in no response.

Citation

If you use the RodoSol-ALPR dataset in your research, please cite our paper:

  • R. Laroca, E. V. Cardoso, D. R. Lucio, V. Estevam, and D. Menotti, “On the Cross-dataset Generalization in License Plate Recognition” in International Conference on Computer Vision Theory and Applications (VISAPP), Feb 2022, pp. 1–13. [arXiv]
@inproceedings{laroca2022cross,
  title = {On the Cross-dataset Generalization in License Plate Recognition},
  author = {R. {Laroca} and E. V. {Cardoso} and D. R. {Lucio} and V. {Estevam} and D. {Menotti}},
  year = {2022},
  month = {Feb},
  booktitle = {International Conference on Computer Vision Theory and Applications (VISAPP)},
  volume = {},
  number = {},
  pages = {1-13},
  doi = {},
  issn={2184-4321},
}

Contact

Please contact Rayson Laroca ([email protected]) with questions or comments.

Owner
Rayson Laroca
Rayson Laroca is a PhD student at the Federal University of Paraná (UFPR), where he also received his master's degree in Computer Science.
Rayson Laroca
BarcodeRattler - A Raspberry Pi Powered Barcode Reader to load a game on the Mister FPGA using MBC

Barcode Rattler A Raspberry Pi Powered Barcode Reader to load a game on the Mist

Chrissy 29 Oct 31, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
Multivariate Time Series Transformer, public version

Multivariate Time Series Transformer Framework This code corresponds to the paper: George Zerveas et al. A Transformer-based Framework for Multivariat

363 Jan 03, 2023
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》

RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai

Youzhi Gu 7 Nov 27, 2021
KinectFusion implemented in Python with PyTorch

KinectFusion implemented in Python with PyTorch This is a lightweight Python implementation of KinectFusion. All the core functions (TSDF volume, fram

Jingwen Wang 80 Jan 03, 2023
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Don Schnitzius 15 Nov 20, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create

Vector AI 267 Dec 23, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

EMI-Group 175 Dec 30, 2022
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023