Video Contrastive Learning with Global Context

Overview

Video Contrastive Learning with Global Context (VCLR)

This is the official PyTorch implementation of our VCLR paper.

Install dependencies

  • environments
    conda create --name vclr python=3.7
    conda activate vclr
    conda install numpy scipy scikit-learn matplotlib scikit-image
    pip install torch==1.7.1 torchvision==0.8.2
    pip install opencv-python tqdm termcolor gcc7 ffmpeg tensorflow==1.15.2
    pip install mmcv-full==1.2.7

Prepare datasets

Please refer to PREPARE_DATA to prepare the datasets.

Prepare pretrained MoCo weights

In this work, we follow SeCo and use the pretrained weights of MoCov2 as initialization.

cd ~
git clone https://github.com/amazon-research/video-contrastive-learning.git
cd video-contrastive-learning
mkdir pretrain && cd pretrain
wget https://dl.fbaipublicfiles.com/moco/moco_checkpoints/moco_v2_200ep/moco_v2_200ep_pretrain.pth.tar
cd ..

Self-supervised pretraining

bash shell/main_train.sh

Checkpoints will be saved to ./results

Downstream tasks

Linear evaluation

In order to evaluate the effectiveness of self-supervised learning, we conduct a linear evaluation (probing) on Kinetics400 dataset. Basically, we first extract features from the pretrained weight and then train a SVM classifier to see how the learned features perform.

bash shell/eval_svm.sh
  • Results

    Arch Pretrained dataset Epoch Pretrained model Acc. on K400
    ResNet50 Kinetics400 400 Download link 64.1

Video retrieval

bash shell/eval_retrieval.sh

Action recognition & action localization

Here, we use mmaction2 for both tasks. If you are not familiar with mmaction2, you can read the official documentation.

Installation

  • Step1: Install mmaction2

    To make sure the results can be reproduced, please use our forked version of mmaction2 (version: 0.11.0):

    conda activate vclr
    cd ~
    git clone https://github.com/KuangHaofei/mmaction2
    
    cd mmaction2
    pip install -v -e .
  • Step2: Prepare the pretrained weights

    Our pretrained backbone have different format with the backbone of mmaction2, it should be transferred to mmaction2 format. We provide the transferred version of our K400 pretrained weights, TSN and TSM. We also provide the script for transferring weights, you can find it here.

    Moving the pretrained weights to checkpoints directory:

    cd ~/mmaction2
    mkdir checkpoints
    wget https://haofeik-data.s3.amazonaws.com/VCLR/pretrained/vclr_mm.pth
    wget https://haofeik-data.s3.amazonaws.com/VCLR/pretrained/vclr_mm_tsm.pth

Action recognition

Make sure you have prepared the dataset and environments following the previous step. Now suppose you are in the root directory of mmaction2, follow the subsequent steps to fine tune the TSN or TSM models for action recognition.

For each dataset, the train and test setting can be found in the configuration files.

  • UCF101

    • config file: tsn_ucf101.py
    • train command:
      ./tools/dist_train.sh configs/recognition/tsn/vclr/tsn_ucf101.py 8 \
        --validate --seed 0 --deterministic
    • test command:
      python tools/test.py configs/recognition/tsn/vclr/tsn_ucf101.py \
        work_dirs/vclr/ucf101/latest.pth \
        --eval top_k_accuracy mean_class_accuracy --out result.json
  • HMDB51

    • config file: tsn_hmdb51.py
    • train command:
      ./tools/dist_train.sh configs/recognition/tsn/vclr/tsn_hmdb51.py 8 \
        --validate --seed 0 --deterministic
    • test command:
      python tools/test.py configs/recognition/tsn/vclr/tsn_hmdb51.py \
        work_dirs/vclr/hmdb51/latest.pth \
        --eval top_k_accuracy mean_class_accuracy --out result.json
  • SomethingSomethingV2: TSN

    • config file: tsn_sthv2.py
    • train command:
      ./tools/dist_train.sh configs/recognition/tsn/vclr/tsn_sthv2.py 8 \
        --validate --seed 0 --deterministic
    • test command:
      python tools/test.py configs/recognition/tsn/vclr/tsn_sthv2.py \
        work_dirs/vclr/tsn_sthv2/latest.pth \
        --eval top_k_accuracy mean_class_accuracy --out result.json
  • SomethingSomethingV2: TSM

    • config file: tsm_sthv2.py
    • train command:
      ./tools/dist_train.sh configs/recognition/tsm/vclr/tsm_sthv2.py 8 \
        --validate --seed 0 --deterministic
    • test command:
      python tools/test.py configs/recognition/tsm/vclr/tsm_sthv2.py \
        work_dirs/vclr/tsm_sthv2/latest.pth \
        --eval top_k_accuracy mean_class_accuracy --out result.json
  • ActivityNet

    • config file: tsn_activitynet.py
    • train command:
      ./tools/dist_train.sh configs/recognition/tsn/vclr/tsn_activitynet.py 8 \
        --validate --seed 0 --deterministic
    • test command:
      python tools/test.py configs/recognition/tsn/vclr/tsn_activitynet.py \
        work_dirs/vclr/tsn_activitynet/latest.pth \
        --eval top_k_accuracy mean_class_accuracy --out result.json
  • Results

    Arch Dataset Finetuned model Acc.
    TSN UCF101 Download link 85.6
    TSN HMDB51 Download link 54.1
    TSN SomethingSomethingV2 Download link 33.3
    TSM SomethingSomethingV2 Download link 52.0
    TSN ActivityNet Download link 71.9

Action localization

  • Step 1: Follow the previous section, suppose the finetuned model is saved at work_dirs/vclr/tsn_activitynet/latest.pth

  • Step 2: Extract ActivityNet features

    cd ~/mmaction2/tools/data/activitynet/
    
    python tsn_feature_extraction.py --data-prefix /home/ubuntu/data/ActivityNet/rawframes \
      --data-list /home/ubuntu/data/ActivityNet/anet_train_video.txt \
      --output-prefix /home/ubuntu/data/ActivityNet/rgb_feat \
      --modality RGB --ckpt /home/ubuntu/mmaction2/work_dirs/vclr/tsn_activitynet/latest.pth
    
    python tsn_feature_extraction.py --data-prefix /home/ubuntu/data/ActivityNet/rawframes \
      --data-list /home/ubuntu/data/ActivityNet/anet_val_video.txt \
      --output-prefix /home/ubuntu/data/ActivityNet/rgb_feat \
      --modality RGB --ckpt /home/ubuntu/mmaction2/work_dirs/vclr/tsn_activitynet/latest.pth
    
    python activitynet_feature_postprocessing.py \
      --rgb /home/ubuntu/data/ActivityNet/rgb_feat \
      --dest /home/ubuntu/data/ActivityNet/mmaction_feat

    Note, the root directory of ActivityNey is /home/ubuntu/data/ActivityNet/ in our case. Please replace it according to your real directory.

  • Step 3: Train and test the BMN model

    • train
      cd ~/mmaction2
      ./tools/dist_train.sh configs/localization/bmn/bmn_acitivitynet_feature_vclr.py 2 \
        --work-dir work_dirs/vclr/bmn_activitynet --validate --seed 0 --deterministic --bmn
    • test
      python tools/test.py configs/localization/bmn/bmn_acitivitynet_feature_vclr.py \
        work_dirs/vclr/bmn_activitynet/latest.pth \
        --bmn --eval [email protected] --out result.json
  • Results

    Arch Dataset Finetuned model AUC [email protected]
    BMN ActivityNet Download link 65.5 73.8

Feature visualization

We provide our feature visualization code at here.

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin

gts3.org (<a href=[email protected])"> 129 Dec 15, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! Very tiny! Stock Market Financial Technical Analysis Python library . Quant Trading automation or cryptocoin exchange

MyTT Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! to Stock Market Financial Technical Analysis Python

dev 34 Dec 27, 2022
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)

Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture

Devendra Chaplot 234 Nov 05, 2022
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022