Video Contrastive Learning with Global Context

Overview

Video Contrastive Learning with Global Context (VCLR)

This is the official PyTorch implementation of our VCLR paper.

Install dependencies

  • environments
    conda create --name vclr python=3.7
    conda activate vclr
    conda install numpy scipy scikit-learn matplotlib scikit-image
    pip install torch==1.7.1 torchvision==0.8.2
    pip install opencv-python tqdm termcolor gcc7 ffmpeg tensorflow==1.15.2
    pip install mmcv-full==1.2.7

Prepare datasets

Please refer to PREPARE_DATA to prepare the datasets.

Prepare pretrained MoCo weights

In this work, we follow SeCo and use the pretrained weights of MoCov2 as initialization.

cd ~
git clone https://github.com/amazon-research/video-contrastive-learning.git
cd video-contrastive-learning
mkdir pretrain && cd pretrain
wget https://dl.fbaipublicfiles.com/moco/moco_checkpoints/moco_v2_200ep/moco_v2_200ep_pretrain.pth.tar
cd ..

Self-supervised pretraining

bash shell/main_train.sh

Checkpoints will be saved to ./results

Downstream tasks

Linear evaluation

In order to evaluate the effectiveness of self-supervised learning, we conduct a linear evaluation (probing) on Kinetics400 dataset. Basically, we first extract features from the pretrained weight and then train a SVM classifier to see how the learned features perform.

bash shell/eval_svm.sh
  • Results

    Arch Pretrained dataset Epoch Pretrained model Acc. on K400
    ResNet50 Kinetics400 400 Download link 64.1

Video retrieval

bash shell/eval_retrieval.sh

Action recognition & action localization

Here, we use mmaction2 for both tasks. If you are not familiar with mmaction2, you can read the official documentation.

Installation

  • Step1: Install mmaction2

    To make sure the results can be reproduced, please use our forked version of mmaction2 (version: 0.11.0):

    conda activate vclr
    cd ~
    git clone https://github.com/KuangHaofei/mmaction2
    
    cd mmaction2
    pip install -v -e .
  • Step2: Prepare the pretrained weights

    Our pretrained backbone have different format with the backbone of mmaction2, it should be transferred to mmaction2 format. We provide the transferred version of our K400 pretrained weights, TSN and TSM. We also provide the script for transferring weights, you can find it here.

    Moving the pretrained weights to checkpoints directory:

    cd ~/mmaction2
    mkdir checkpoints
    wget https://haofeik-data.s3.amazonaws.com/VCLR/pretrained/vclr_mm.pth
    wget https://haofeik-data.s3.amazonaws.com/VCLR/pretrained/vclr_mm_tsm.pth

Action recognition

Make sure you have prepared the dataset and environments following the previous step. Now suppose you are in the root directory of mmaction2, follow the subsequent steps to fine tune the TSN or TSM models for action recognition.

For each dataset, the train and test setting can be found in the configuration files.

  • UCF101

    • config file: tsn_ucf101.py
    • train command:
      ./tools/dist_train.sh configs/recognition/tsn/vclr/tsn_ucf101.py 8 \
        --validate --seed 0 --deterministic
    • test command:
      python tools/test.py configs/recognition/tsn/vclr/tsn_ucf101.py \
        work_dirs/vclr/ucf101/latest.pth \
        --eval top_k_accuracy mean_class_accuracy --out result.json
  • HMDB51

    • config file: tsn_hmdb51.py
    • train command:
      ./tools/dist_train.sh configs/recognition/tsn/vclr/tsn_hmdb51.py 8 \
        --validate --seed 0 --deterministic
    • test command:
      python tools/test.py configs/recognition/tsn/vclr/tsn_hmdb51.py \
        work_dirs/vclr/hmdb51/latest.pth \
        --eval top_k_accuracy mean_class_accuracy --out result.json
  • SomethingSomethingV2: TSN

    • config file: tsn_sthv2.py
    • train command:
      ./tools/dist_train.sh configs/recognition/tsn/vclr/tsn_sthv2.py 8 \
        --validate --seed 0 --deterministic
    • test command:
      python tools/test.py configs/recognition/tsn/vclr/tsn_sthv2.py \
        work_dirs/vclr/tsn_sthv2/latest.pth \
        --eval top_k_accuracy mean_class_accuracy --out result.json
  • SomethingSomethingV2: TSM

    • config file: tsm_sthv2.py
    • train command:
      ./tools/dist_train.sh configs/recognition/tsm/vclr/tsm_sthv2.py 8 \
        --validate --seed 0 --deterministic
    • test command:
      python tools/test.py configs/recognition/tsm/vclr/tsm_sthv2.py \
        work_dirs/vclr/tsm_sthv2/latest.pth \
        --eval top_k_accuracy mean_class_accuracy --out result.json
  • ActivityNet

    • config file: tsn_activitynet.py
    • train command:
      ./tools/dist_train.sh configs/recognition/tsn/vclr/tsn_activitynet.py 8 \
        --validate --seed 0 --deterministic
    • test command:
      python tools/test.py configs/recognition/tsn/vclr/tsn_activitynet.py \
        work_dirs/vclr/tsn_activitynet/latest.pth \
        --eval top_k_accuracy mean_class_accuracy --out result.json
  • Results

    Arch Dataset Finetuned model Acc.
    TSN UCF101 Download link 85.6
    TSN HMDB51 Download link 54.1
    TSN SomethingSomethingV2 Download link 33.3
    TSM SomethingSomethingV2 Download link 52.0
    TSN ActivityNet Download link 71.9

Action localization

  • Step 1: Follow the previous section, suppose the finetuned model is saved at work_dirs/vclr/tsn_activitynet/latest.pth

  • Step 2: Extract ActivityNet features

    cd ~/mmaction2/tools/data/activitynet/
    
    python tsn_feature_extraction.py --data-prefix /home/ubuntu/data/ActivityNet/rawframes \
      --data-list /home/ubuntu/data/ActivityNet/anet_train_video.txt \
      --output-prefix /home/ubuntu/data/ActivityNet/rgb_feat \
      --modality RGB --ckpt /home/ubuntu/mmaction2/work_dirs/vclr/tsn_activitynet/latest.pth
    
    python tsn_feature_extraction.py --data-prefix /home/ubuntu/data/ActivityNet/rawframes \
      --data-list /home/ubuntu/data/ActivityNet/anet_val_video.txt \
      --output-prefix /home/ubuntu/data/ActivityNet/rgb_feat \
      --modality RGB --ckpt /home/ubuntu/mmaction2/work_dirs/vclr/tsn_activitynet/latest.pth
    
    python activitynet_feature_postprocessing.py \
      --rgb /home/ubuntu/data/ActivityNet/rgb_feat \
      --dest /home/ubuntu/data/ActivityNet/mmaction_feat

    Note, the root directory of ActivityNey is /home/ubuntu/data/ActivityNet/ in our case. Please replace it according to your real directory.

  • Step 3: Train and test the BMN model

    • train
      cd ~/mmaction2
      ./tools/dist_train.sh configs/localization/bmn/bmn_acitivitynet_feature_vclr.py 2 \
        --work-dir work_dirs/vclr/bmn_activitynet --validate --seed 0 --deterministic --bmn
    • test
      python tools/test.py configs/localization/bmn/bmn_acitivitynet_feature_vclr.py \
        work_dirs/vclr/bmn_activitynet/latest.pth \
        --bmn --eval [email protected] --out result.json
  • Results

    Arch Dataset Finetuned model AUC [email protected]
    BMN ActivityNet Download link 65.5 73.8

Feature visualization

We provide our feature visualization code at here.

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
Learning Optical Flow from a Few Matches (CVPR 2021)

Learning Optical Flow from a Few Matches This repository contains the source code for our paper: Learning Optical Flow from a Few Matches CVPR 2021 Sh

Shihao Jiang (Zac) 159 Dec 16, 2022
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images

Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K

Aitor Ruano 87 Dec 16, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation

Info This is the code repository of the work Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation from Elias T

2 Apr 20, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
TianyuQi 10 Dec 11, 2022
Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and shape estimation at the university of Lincoln

PhD_3DPerception Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and s

lelouedec 2 Oct 06, 2022
Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

106 Dec 14, 2022
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
a morph transfer UGATIT for image translation.

Morph-UGATIT a morph transfer UGATIT for image translation. Introduction 中文技术文档 This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervise

55 Nov 14, 2022
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021
Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Single-view robot pose and joint angle estimation via render & compare Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic CVPR: Conference on C

Yann Labbé 51 Oct 14, 2022