BC3407-Group-5-Project - BC3407 Group Project With Python

Overview

BC3407-Group-5-Project

As the world struggles to contain the ever-changing variants of COVID-19, healthcare industry is facing tremendous stress from issues arising from different aspects. One significant issue is on resource allocation and utilization. Building additional hospital facility may not be a viable solution in a land scarce country like Singapore. One long standing problem among resource utilization is due to missed appointments. When patients do not show up following their appointment time, the missed appointment results in a waste of resources that have been scheduled and planned. There has not been good solution in reducing the no-show rates. In some, the rates are not even been tracked or computed.

You are to create a Python-based program that can be useful for healthcare industry in tackling this issue. This program is a prototype or proof-of-concept to path the implementation for subsequent development solution to be integrated to the existing system. You are given a sample dataset to start with. It comes with past records of patients who show-up or did not show-up for the appointment in a clinic. You can use it as a start, to develop a suitable solution to provide insights to healthcare professionals. The solution can be a dashboard, web-based or command prompt program. The objective is to apply what you have learnt in this course into this problem domain.

The following table displays the first 5 records from the attached dataset “appointmentData.csv”. It includes the age and gender information of patients. Followed by the time they registered for the appointment and the appointment time details. The day name of appointment is reflected. The other details like their health condition, and other relevant features are also captured. The last column “Show Up” denotes if the patient shows up for the medical appointment.

image

Below are some questions you can try to answer or features you can try to include, you can address one or more of the following or suggest other relevant questions:

  1.     How is the overall picture of no shows over the period?
    
  2.     No-show made up of how many percent of the given data?
    
  3.     What kind of people or age group likely to no-show? Or it’s random?
    
  4.     Does sending reminder helps with reducing no-show?
    
  5.     Provide appropriate dashboard or visualization features to summarize the given data set for viewing.
    
  6.     Suggest or implement suitable features that can help with reducing no-show or highlight patients more likely to no-show with additional reminders or etc?
    

Alternatively, you can look for additional dataset that can help with understanding or tackling this issue or for better resource planning in healthcare. For example, the healthcare resources data, infection rates, chronic disease rates etc. You can make assumptions on information not stated in this requirements, or target a certain specialist clinic.

All work must be done in the Python programming language.

Deliverables: Prepare a zip file (in .zip format only) containing the relevant deliverables below:

  • Report: One word or pdf file containing the proof-of-concept prototype with the following content: -- Work/responsibility distribution. Which team members in charge of which part of the program. -- Objective of the project and how it addresses the issue. -- Features/Functionalities designed for the prototype. -- User manual with print screens from the prototype to illustrate how to use this project's program; consider different user roles. -- Include the links to recording, i,e. the hyperlinks to every group member’s individual recorded videos. Do not submit video files, submit only hyperlink.
  • One folder containing additional dataset (if any), all working files.

One group submit one copy of the above. Submission box will be opened in Week 11. All works submitted will go through plagiarism checker. Submitting work done by others will result in failing the module directly.

No presentation nor lesson on week 13, you are to prepare the recording beforehand and submit before due date. Recording replaces class presentation. The duration of each group member’s individual recording should be about 2 to 3 minutes maximum. You are advised to adhere to the time limit strictly or penalty will be imposed. In the individual video, you are required to reflect on your contribution to the group project, what you have done for the project, what have you learnt from the project. Each group member will record his/her own video and ensure that the hyperlink to the video is included on the first page of the report submitted by the group. You can use Zoom, Teams or YouTube for recording. If you use other software to record into mp4 file, upload online to Youtube, OneDrive or other cloud storage (Do not submit video files). In the case of Youtube, indicate as restricted, and submit only the link information. Include the link information (one link for each team member) in your report.

You are required to submit a peer evaluation form online individually at the end of the semester. Individual peer evaluation submission is compulsory for all team members. An online peer evaluation system will be opened nearer to the submission date.

Good project outcome is the end product of good teamwork. We hope to see all team members contribute equally. The peer evaluation will be considered in evaluating the project grade should the contribution be significantly unequal. Submission will be kept confidential.

Due Date: Week 13 Wednesday (13 Apr 2022, 7 p.m.)

Reference: Zoom Recording: Registering your NTU Zoom account (If you have not done so. Quick Start Guide for NTU Zoom Account.pdf) Zoom Login & Create Meeting (See Quick Start Guide for Online Meetings with Zoom.pdf) Video Guide on Recording Teams Recording: Zoom Login & Create Meeting (See Quick Start Guide for Online Meetings with Zoom.pdf) Online Guide on Recording: https://support.microsoft.com/en-us/office/record-a-meeting-in-teams-34dfbe7f-b07d-4a27-b4c6-de62f1348c24

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-

VITA 298 Dec 12, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup)智能人机交互自然语言理解赛道第二名参赛解决方案

2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup) 智能人机交互自然语言理解赛道第二名解决方案 比赛网址: CCIR-Cup-智能人机交互自然语言理解 1.依赖环境: python==3.8 torch==1.7.1+cu110 numpy==1.19.2 transformers=

JinXiang 22 Oct 29, 2022
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

65 Dec 22, 2022