A Practical Debugging Tool for Training Deep Neural Networks

Overview

Python 3.6+ Code style: black


Logo

A Practical Debugging Tool for Training Deep Neural Networks

A better status screen for deep learning.
Explore the docs »

About The ProjectGetting StartedTutorialsExperimentsDocs


About The Project

CockpitAnimation

Motivation: Currently, training a deep neural network is often a pain! Succesfully training such a network usually requires either years of intuition or expensive parameter searches and lots of trial and error. Traditional debugger provide only limited help: They can help diagnose syntactical errors but they do not help with training bugs such as ill-chosen learning rates.

Cockpit is a visual and statistical debugger specifically designed for deep learning! With it, you can:

  • Track relevant diagnostics that can tell you more about the state of the training process. The train/test loss might tell you whether your training is working or not, but not why. Statistical quantities, such as the gradient norm, Hessian trace and histograms over the network's gradient and parameters offer insight into the training process.
  • Visualize them in real-time to get a status screen of your training. Cockpit compresses and visualizes the most important quantities into instruments providing more insight into the training.
  • Use these quantities for novel and more sophisticated training algorithms or to build additional visualizations.

Cockpit uses BackPACK in order to compute those quantities efficiently. In fact, the above animation shows training of the All-CNN-C network on CIFAR-100.

Getting Started

Installation

To install Cockpit simply run

git clone https://github.com/ahthie7u/cockpit.git
cd cockpit/
pip install -r requirements.txt
pip install .

Tutorials

With two simple tutorials we will show how one can use Cockpit to monitor training. More tutorials and detailed explanations of the individual parts of Cockpit can be found in the documentation.

Using the Cockpit for general Training Loops

This is a basic example, how you can use Cockpit to track quantities during a simple training loop using a CNN on MNIST. The full example (with more details) can be found in the examples directory and can be directly run via

python examples/00_mnist.py

Taking a given, standard training loop, there are only a few additional lines of code required to use the Cockpit. Let's go through them.

After loading the MNIST data, building a network, defining the loss function and the optimizer, we initialize the Cockpit

[...]
cockpit = Cockpit([model, lossfunc], create_logpath(), track_interval=5)
[...]

Here we have to pass the model and the lossfunction, so that they can be extend via BackPACK. We will also pass the path where we want the log file to be stored, as well as the tracking_interval which will dictate how often we track.

Once the training starts and we compute the forward pass, we also want to compute the individual losses, not only the mean loss.

for _ in range(num_epochs):
    for inputs, labels in iter(train_loader):
        [...]
        loss = lossfunc(outputs, labels)
        with torch.no_grad():
            individual_losses = individual_lossfunc(outputs, labels)
        [...]

The individual lossfunction, however, is simply the regular lossfunction with the paramter reduction="none" instead of the default reduction="mean".

We surround the backward pass of the model with a with cockpit(): statement, to make sure that the additional quantities are computed, if necessary:

    [...]
    with cockpit(iteration, info={
                "batch_size": inputs.shape[0],
                "individual_losses": individual_losses,
            }):
        loss.backward(create_graph=cockpit.create_graph)

    cockpit.track(iteration, loss)
    [...]

After the backward pass is done, we can track all quantities if desired. Note, that it will only track if the current iteration hits the pre-defined tracking_interval, saving computation.

Once the quantites are tracked, they can be written to the log file and visualized in a plot. In the example we do this every 10-th iteration:

    [...]
    if iteration % 10 == 0:
        cockpit.write()
        cockpit.plot()
    [...]

Adding these lines to your training loop allows you to track and monitor the many quantites offered by Cockpit. There are many ways to customize this setup, for example, by only tracking parts of the network, tracking quantities at different rates (i.e. tracking_intervals), etc. These are described in the documentation.

Using the Cockpit with DeepOBS

It is very easy to use Cockpit together with DeepOBS. DeepOBS is a benchmarking tool for optimization method and directly offers more than twenty test problems (i.e. data sets and deep networks) to train on.

If you want to use Cockpit, for example, to monitor your novel optimizer, you can simply use the runner provided with the Cockpit. The ScheduleCockpitRunner works analogously to other DeepOBS Runners, with a minimal working example provided here:

"""Run SGD on the Quadratic Problem of DeepOBS."""

from torch.optim import SGD
from backboard.runners.scheduled_runner import ScheduleCockpitRunner

# Replace with your optimizer, in this case we use SGD
optimizer_class = SGD
hyperparams = {"lr": {"type": float}}

def lr_schedule(num_epochs):
    """Some Learning rate schedule."""
    return lambda epoch: 0.95 ** epoch

runner = ScheduleCockpitRunner(optimizer_class, hyperparams)

# Fix training parameters, otherwise they can be passed via the command line
runner.run(
    testproblem="quadratic_deep",
    track_interval=1,
    plot_interval=10,
    lr_schedule=lr_schedule,
)

The output of this script is (among other files) a Cockpit log file ending in __log.json which holds all the tracke data. It can, for example, be read by the CockpitPlotter to visualize these quantities.

A more detailed example of using Cockpit and DeepOBS can be found in the examples directory, which can be run with

python examples/01_deepobs_cockpit.py

Documentation

A more detailed documentation with the API can be found here. The documentation also provides tutorials on how to add additional and custom quantities as well as add novel instruments to Cockpit.

Lime: Explaining the predictions of any machine learning classifier

lime This project is about explaining what machine learning classifiers (or models) are doing. At the moment, we support explaining individual predict

Marco Tulio Correia Ribeiro 10.3k Jan 01, 2023
A collection of research papers and software related to explainability in graph machine learning.

A collection of research papers and software related to explainability in graph machine learning.

AstraZeneca 1.9k Dec 26, 2022
L2X - Code for replicating the experiments in the paper Learning to Explain: An Information-Theoretic Perspective on Model Interpretation.

L2X Code for replicating the experiments in the paper Learning to Explain: An Information-Theoretic Perspective on Model Interpretation at ICML 2018,

Jianbo Chen 113 Sep 06, 2022
Visualize a molecule and its conformations in Jupyter notebooks/lab using py3dmol

Mol Viewer This is a simple package wrapping py3dmol for a single command visualization of a RDKit molecule and its conformations (embed as Conformer

Benoît BAILLIF 1 Feb 11, 2022
⬛ Python Individual Conditional Expectation Plot Toolbox

⬛ PyCEbox Python Individual Conditional Expectation Plot Toolbox A Python implementation of individual conditional expecation plots inspired by R's IC

Austin Rochford 140 Dec 30, 2022
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX, TensorFlow Lite, Keras, Caffe, Darknet, ncnn,

Lutz Roeder 20.9k Dec 28, 2022
JittorVis - Visual understanding of deep learning model.

JittorVis - Visual understanding of deep learning model.

182 Jan 06, 2023
Interactive convnet features visualization for Keras

Quiver Interactive convnet features visualization for Keras The quiver workflow Video Demo Build your model in keras model = Model(...) Launch the vis

Keplr 1.7k Dec 21, 2022
Making decision trees competitive with neural networks on CIFAR10, CIFAR100, TinyImagenet200, Imagenet

Neural-Backed Decision Trees · Site · Paper · Blog · Video Alvin Wan, *Lisa Dunlap, *Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne Petryk, Sarah

Alvin Wan 556 Dec 20, 2022
ModelChimp is an experiment tracker for Deep Learning and Machine Learning experiments.

ModelChimp What is ModelChimp? ModelChimp is an experiment tracker for Deep Learning and Machine Learning experiments. ModelChimp provides the followi

ModelChimp 124 Dec 21, 2022
GNNLens2 is an interactive visualization tool for graph neural networks (GNN).

GNNLens2 is an interactive visualization tool for graph neural networks (GNN).

Distributed (Deep) Machine Learning Community 143 Jan 07, 2023
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Webis 42 Aug 14, 2022
Code for "High-Precision Model-Agnostic Explanations" paper

Anchor This repository has code for the paper High-Precision Model-Agnostic Explanations. An anchor explanation is a rule that sufficiently “anchors”

Marco Tulio Correia Ribeiro 735 Jan 05, 2023
A python library for decision tree visualization and model interpretation.

dtreeviz : Decision Tree Visualization Description A python library for decision tree visualization and model interpretation. Currently supports sciki

Terence Parr 2.4k Jan 02, 2023
👋🦊 Xplique is a Python toolkit dedicated to explainability, currently based on Tensorflow.

👋🦊 Xplique is a Python toolkit dedicated to explainability, currently based on Tensorflow.

DEEL 343 Jan 02, 2023
An intuitive library to add plotting functionality to scikit-learn objects.

Welcome to Scikit-plot Single line functions for detailed visualizations The quickest and easiest way to go from analysis... ...to this. Scikit-plot i

Reiichiro Nakano 2.3k Dec 31, 2022
Interpretability and explainability of data and machine learning models

AI Explainability 360 (v0.2.1) The AI Explainability 360 toolkit is an open-source library that supports interpretability and explainability of datase

1.2k Dec 29, 2022
Python implementation of R package breakDown

pyBreakDown Python implementation of breakDown package (https://github.com/pbiecek/breakDown). Docs: https://pybreakdown.readthedocs.io. Requirements

MI^2 DataLab 41 Mar 17, 2022
An Empirical Review of Optimization Techniques for Quantum Variational Circuits

QVC Optimizer Review Code for the paper "An Empirical Review of Optimization Techniques for Quantum Variational Circuits". Each of the python files ca

Owen Lockwood 5 Jun 28, 2022
Algorithms for monitoring and explaining machine learning models

Alibi is an open source Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-qual

Seldon 1.9k Dec 30, 2022