⬛ Python Individual Conditional Expectation Plot Toolbox

Overview

PyCEbox

Python Individual Conditional Expectation Plot Toolbox

Individual conditional expectation plot

A Python implementation of individual conditional expecation plots inspired by R's ICEbox. Individual conditional expectation plots were introduced in Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation (arXiv:1309.6392).

Quickstart

pycebox is available on PyPI and can be installed with pip install pycebox.

The tutorial recreates the first example in the above paper using pycebox.

Development

For easy development and prototyping using IPython notebooks, a Docker environment is included. To run an IPython notebook with access to your development version of pycebox, run PORT=8889 sh ./start_container.sh. A Jupyter notebook server with access to your development version of pycebox should be available at http://localhost:8889/tree.

To run the pycebox's tests in your development container

  1. Access a bash shell on the container with docker exec -it pycebox bash.
  2. Change to the pycebox directory with cd ../pycebox
  3. Run the tests with pytest test/test.py

Documentation

For details of pycebox's API, consult the documentation.

License

This library is distributed under the MIT License.

Comments
  • Typo in ice_plot() regarding _get_quantiles()

    Typo in ice_plot() regarding _get_quantiles()

    There is a typo in the ice_plot() function when calling the _get_quantiles() function. In lines 124 and 137, the ice_plot() calls __get_quantiles() (which is undefined) instead of _get_quantiles(), which results in an error if trying to use quantiles or center the ICE curves.

    opened by savvastj 6
  • Using predicted probabilities for binary classification

    Using predicted probabilities for binary classification

    Is there any way to give some form of predict_proba function to the ice() function in order to see the probability as opposed to the prediction?

    Thanks! Nema

    opened by nemasobhani 1
  • Plot mistake

    Plot mistake

    There is a problem in the visualization part. When I am trying to plot the graph in the example, I see the following mistake:


    TypeError Traceback (most recent call last) in 12 ice_plot(ice_df, frac_to_plot=0.1, 13 color_by='x3', cmap=PuOr, ---> 14 ax=ice_ax); 15 16 ice_ax.set_xlabel('$X_2$');

    C:\ProgramData\Anaconda3\lib\site-packages\pycebox\ice.py in ice_plot(ice_data, frac_to_plot, plot_points, point_kwargs, x_quantile, plot_pdp, centered, centered_quantile, color_by, cmap, ax, pdp_kwargs, **kwargs) 128 if frac_to_plot < 1.: 129 n_cols = ice_data.shape[1] --> 130 icols = np.random.choice(n_cols, size=frac_to_plot * n_cols, replace=False) 131 plot_ice_data = ice_data.iloc[:, icols] 132 else:

    mtrand.pyx in mtrand.RandomState.choice()

    TypeError: 'float' object cannot be interpreted as an integer

    opened by karakol15 4
  • "frac_to_plot" parameter in ice_plot

    Hey Austin,

    This package rocks, thanks for publishing it!

    I have a question and a potential small bug in the ice_plot method, specifically on the "frac_to_plot" parameter.

    It is my understanding that you simply take the fraction and multiply by the number of columns, and then pass this to the "size" parameter of np.random.choice(). I think we should make sure that the number being passed is an integer, not a float. Otherwise np.random.choice() will not accept a float as a parameter for "size".

    Current: icols = np.random.choice(n_cols, size=frac_to_plot * n_cols, replace=False)

    Fix: icols = np.random.choice(n_cols, size=int(frac_to_plot * n_cols), replace=False)

    Best, Andrew

    opened by andrew-cho 1
  • Extended use to classification models, fixed typecast bug

    Extended use to classification models, fixed typecast bug

    • Extended use to classification models by allowing predict_proba to be passed to the ice_plot function.
    • Fixed 'type error when size is non-int' error for np.random.choice function
    opened by sanjifr3 0
  • Averaging ICE plots across multiple runs/folds of a model

    Averaging ICE plots across multiple runs/folds of a model

    Hi Austin,

    I was wondering if it is possible to average across multiple runs/folds of the same model.

    I am trying at the moment, but the resulting ICE plots do not make sense. The per run plots make sense but when I average them across both runs and folds the data gets screwed.

    Cheers,

    Dan

    opened by danieltudosiu 0
Releases(0.0.1)
Owner
Austin Rochford
Chief Data Scientist @ Kibo Commerce, recovering mathematician, enthusiastic Bayesian
Austin Rochford
JittorVis - Visual understanding of deep learning model.

JittorVis - Visual understanding of deep learning model.

182 Jan 06, 2023
Pytorch implementation of convolutional neural network visualization techniques

Convolutional Neural Network Visualizations This repository contains a number of convolutional neural network visualization techniques implemented in

Utku Ozbulak 7k Jan 03, 2023
treeinterpreter - Interpreting scikit-learn's decision tree and random forest predictions.

TreeInterpreter Package for interpreting scikit-learn's decision tree and random forest predictions. Allows decomposing each prediction into bias and

Ando Saabas 720 Dec 22, 2022
pytorch implementation of "Distilling a Neural Network Into a Soft Decision Tree"

Soft-Decision-Tree Soft-Decision-Tree is the pytorch implementation of Distilling a Neural Network Into a Soft Decision Tree, paper recently published

Kim Heecheol 262 Dec 04, 2022
Interactive convnet features visualization for Keras

Quiver Interactive convnet features visualization for Keras The quiver workflow Video Demo Build your model in keras model = Model(...) Launch the vis

Keplr 1.7k Dec 21, 2022
An intuitive library to add plotting functionality to scikit-learn objects.

Welcome to Scikit-plot Single line functions for detailed visualizations The quickest and easiest way to go from analysis... ...to this. Scikit-plot i

Reiichiro Nakano 2.3k Dec 31, 2022
👋🦊 Xplique is a Python toolkit dedicated to explainability, currently based on Tensorflow.

👋🦊 Xplique is a Python toolkit dedicated to explainability, currently based on Tensorflow.

DEEL 343 Jan 02, 2023
Visualize a molecule and its conformations in Jupyter notebooks/lab using py3dmol

Mol Viewer This is a simple package wrapping py3dmol for a single command visualization of a RDKit molecule and its conformations (embed as Conformer

Benoît BAILLIF 1 Feb 11, 2022
GNNLens2 is an interactive visualization tool for graph neural networks (GNN).

GNNLens2 is an interactive visualization tool for graph neural networks (GNN).

Distributed (Deep) Machine Learning Community 143 Jan 07, 2023
Bias and Fairness Audit Toolkit

The Bias and Fairness Audit Toolkit Aequitas is an open-source bias audit toolkit for data scientists, machine learning researchers, and policymakers

Data Science for Social Good 513 Jan 06, 2023
Visualization Toolbox for Long Short Term Memory networks (LSTMs)

Visualization Toolbox for Long Short Term Memory networks (LSTMs)

Hendrik Strobelt 1.1k Jan 04, 2023
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 187 Dec 27, 2022
Contrastive Explanation (Foil Trees), developed at TNO/Utrecht University

Contrastive Explanation (Foil Trees) Contrastive and counterfactual explanations for machine learning (ML) Marcel Robeer (2018-2020), TNO/Utrecht Univ

M.J. Robeer 41 Aug 29, 2022
Neural network visualization toolkit for tf.keras

Neural network visualization toolkit for tf.keras

Yasuhiro Kubota 262 Dec 19, 2022
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM

Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Comprehensive collection of Pixel Attribution methods for Computer Vision.

Jacob Gildenblat 6.5k Jan 01, 2023
Logging MXNet data for visualization in TensorBoard.

Logging MXNet Data for Visualization in TensorBoard Overview MXBoard provides a set of APIs for logging MXNet data for visualization in TensorBoard. T

Amazon Web Services - Labs 327 Dec 05, 2022
A library that implements fairness-aware machine learning algorithms

Themis ML themis-ml is a Python library built on top of pandas and sklearnthat implements fairness-aware machine learning algorithms. Fairness-aware M

Niels Bantilan 105 Dec 30, 2022
Python implementation of R package breakDown

pyBreakDown Python implementation of breakDown package (https://github.com/pbiecek/breakDown). Docs: https://pybreakdown.readthedocs.io. Requirements

MI^2 DataLab 41 Mar 17, 2022
Portal is the fastest way to load and visualize your deep neural networks on images and videos 🔮

Portal is the fastest way to load and visualize your deep neural networks on images and videos 🔮

Datature 243 Jan 05, 2023
Algorithms for monitoring and explaining machine learning models

Alibi is an open source Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-qual

Seldon 1.9k Dec 30, 2022