A library for debugging/inspecting machine learning classifiers and explaining their predictions

Overview

ELI5

PyPI Version Build Status Code Coverage Documentation

ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions.

explain_prediction for text data

explain_prediction for image data

It provides support for the following machine learning frameworks and packages:

  • scikit-learn. Currently ELI5 allows to explain weights and predictions of scikit-learn linear classifiers and regressors, print decision trees as text or as SVG, show feature importances and explain predictions of decision trees and tree-based ensembles. ELI5 understands text processing utilities from scikit-learn and can highlight text data accordingly. Pipeline and FeatureUnion are supported. It also allows to debug scikit-learn pipelines which contain HashingVectorizer, by undoing hashing.
  • Keras - explain predictions of image classifiers via Grad-CAM visualizations.
  • xgboost - show feature importances and explain predictions of XGBClassifier, XGBRegressor and xgboost.Booster.
  • LightGBM - show feature importances and explain predictions of LGBMClassifier and LGBMRegressor.
  • CatBoost - show feature importances of CatBoostClassifier, CatBoostRegressor and catboost.CatBoost.
  • lightning - explain weights and predictions of lightning classifiers and regressors.
  • sklearn-crfsuite. ELI5 allows to check weights of sklearn_crfsuite.CRF models.

ELI5 also implements several algorithms for inspecting black-box models (see Inspecting Black-Box Estimators):

  • TextExplainer allows to explain predictions of any text classifier using LIME algorithm (Ribeiro et al., 2016). There are utilities for using LIME with non-text data and arbitrary black-box classifiers as well, but this feature is currently experimental.
  • Permutation importance method can be used to compute feature importances for black box estimators.

Explanation and formatting are separated; you can get text-based explanation to display in console, HTML version embeddable in an IPython notebook or web dashboards, a pandas.DataFrame object if you want to process results further, or JSON version which allows to implement custom rendering and formatting on a client.

License is MIT.

Check docs for more.


define hyperiongray
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Webis 42 Aug 14, 2022
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens

Lutz Roeder 20.9k Dec 28, 2022
Code for "High-Precision Model-Agnostic Explanations" paper

Anchor This repository has code for the paper High-Precision Model-Agnostic Explanations. An anchor explanation is a rule that sufficiently β€œanchors”

Marco Tulio Correia Ribeiro 735 Jan 05, 2023
L2X - Code for replicating the experiments in the paper Learning to Explain: An Information-Theoretic Perspective on Model Interpretation.

L2X Code for replicating the experiments in the paper Learning to Explain: An Information-Theoretic Perspective on Model Interpretation at ICML 2018,

Jianbo Chen 113 Sep 06, 2022
Neural network visualization toolkit for tf.keras

Neural network visualization toolkit for tf.keras

Yasuhiro Kubota 262 Dec 19, 2022
JittorVis - Visual understanding of deep learning model.

JittorVis - Visual understanding of deep learning model.

182 Jan 06, 2023
GNNLens2 is an interactive visualization tool for graph neural networks (GNN).

GNNLens2 is an interactive visualization tool for graph neural networks (GNN).

Distributed (Deep) Machine Learning Community 143 Jan 07, 2023
Python implementation of R package breakDown

pyBreakDown Python implementation of breakDown package (https://github.com/pbiecek/breakDown). Docs: https://pybreakdown.readthedocs.io. Requirements

MI^2 DataLab 41 Mar 17, 2022
Algorithms for monitoring and explaining machine learning models

Alibi is an open source Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-qual

Seldon 1.9k Dec 30, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

56 Jan 03, 2023
Delve is a Python package for analyzing the inference dynamics of your PyTorch model.

Delve is a Python package for analyzing the inference dynamics of your PyTorch model.

Delve 73 Dec 12, 2022
Bias and Fairness Audit Toolkit

The Bias and Fairness Audit Toolkit Aequitas is an open-source bias audit toolkit for data scientists, machine learning researchers, and policymakers

Data Science for Social Good 513 Jan 06, 2023
Visual Computing Group (Ulm University) 99 Nov 30, 2022
Python Library for Model Interpretation/Explanations

Skater Skater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system

Oracle 1k Dec 27, 2022
πŸ‘‹πŸ¦Š Xplique is a Python toolkit dedicated to explainability, currently based on Tensorflow.

πŸ‘‹πŸ¦Š Xplique is a Python toolkit dedicated to explainability, currently based on Tensorflow.

DEEL 343 Jan 02, 2023
A game theoretic approach to explain the output of any machine learning model.

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo

Scott Lundberg 18.3k Jan 08, 2023
tensorboard for pytorch (and chainer, mxnet, numpy, ...)

tensorboardX Write TensorBoard events with simple function call. The current release (v2.1) is tested on anaconda3, with PyTorch 1.5.1 / torchvision 0

Tzu-Wei Huang 7.5k Jan 07, 2023
Visualization Toolbox for Long Short Term Memory networks (LSTMs)

Visualization Toolbox for Long Short Term Memory networks (LSTMs)

Hendrik Strobelt 1.1k Jan 04, 2023
Model analysis tools for TensorFlow

TensorFlow Model Analysis TensorFlow Model Analysis (TFMA) is a library for evaluating TensorFlow models. It allows users to evaluate their models on

1.2k Dec 26, 2022
⬛ Python Individual Conditional Expectation Plot Toolbox

⬛ PyCEbox Python Individual Conditional Expectation Plot Toolbox A Python implementation of individual conditional expecation plots inspired by R's IC

Austin Rochford 140 Dec 30, 2022