Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Overview

ClipBERT

Less is More: ClipBERT for Video-and-Language Learning via Sparse Sampling

Jie Lei*, Linjie Li*, Luowei Zhou, Zhe Gan, Tamara L. Berg, Mohit Bansal, Jingjing Liu

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipBERT is designed based on 2D CNNs and transformers, and uses a sparse sampling strategy to enable efficient end-to-end video-and-language learning. In this repository, we support end-to-end pretraining and finetuning for the following tasks:

  • Image-text pretraining on COCO and VG captions.
  • Text-to-video retrieval finetuning on MSRVTT, DiDeMo, and ActivityNet Captions.
  • Video-QA finetuning on TGIF-QA and MSRVTT-QA.
  • Image-QA finetuning on VQA 2.0.

It is also feasible and easy to add other image-text or video-text tasks for pretraining and finetuning.

Requirements

We provide a Docker image for easier reproduction. Please install the following:

Our scripts require the user to have the docker group membership so that docker commands can be run without sudo. We only support Linux with NVIDIA GPUs. We test on Ubuntu 18.04 and V100 cards. We use mixed-precision training hence GPUs with Tensor Cores are recommended.

Getting Started

General

  1. Create a folder that stores pretrained models, all the data, and results.

    PATH_TO_STORAGE=/path/to/your/data/
    mkdir -p $PATH_TO_STORAGE/txt_db  # annotations
    mkdir -p $PATH_TO_STORAGE/vis_db  # image and video 
    mkdir -p $PATH_TO_STORAGE/finetune  # finetuning results
    mkdir -p $PATH_TO_STORAGE/pretrained  # pretrained models
  2. Download pretrained models.

    Our e2e pretrained ClipBERT model (849MB), can be downloaded with the following command.

    bash scripts/download_pretrained.sh $PATH_TO_STORAGE

    This pretrained model can be used for finetuning on video-text tasks and image-text tasks. For your convenience, this script will also download bert-base-uncased and grid-feat-vqa model weights, which are used as initialization for pretraining.

  3. Launch the Docker container for running the experiments.

    # docker image should be automatically pulled
    source launch_container.sh $PATH_TO_STORAGE/txt_db $PATH_TO_STORAGE/img_db \
        $PATH_TO_STORAGE/finetune $PATH_TO_STORAGE/pretrained

    The launch script respects $CUDA_VISIBLE_DEVICES environment variable. Note that the source code is mounted into the container under /clipbert instead of built into the image so that user modification will be reflected without re-building the image. (Data folders are mounted into the container separately for flexibility on folder structures.)

Downstream Task Finetuning

Text-to-Video Retrieval

Tasks: MSRVTT retrieval, DiDeMo and ActivityNet Captions paragprah-to-video retrieval, MSRVTT MC Test.

  1. Download data.

    # outside the container  
    # download videos + annotations for $DSET
    bash scripts/download_$DSET.sh $PATH_TO_STORAGE

    $DSET can be one of msrvtt, didemo, anet.

  2. Finetuning.

    # inside the container
    horovodrun -np 4 python src/tasks/run_video_retrieval.py \
        --config $CONFIG_PATH \
        --output_dir $OUTPUT_DIR
    
    # for single GPU
    python src/tasks/run_video_retrieval.py \
        --config $CONFIG_PATH \
        --output_dir $OUTPUT_DIR

    $CONFIG_PATH should be set to one of the .json config files available at src/configs prefixed with _ret. For example, you can use src/configs/msrvtt_ret_base_resnet50.json for MSRVTT retrieval.

  3. Run inference.

    # inside the container
    horovodrun -np 4 python src/tasks/run_video_retrieval.py \
      --do_inference 1 --output_dir $OUTPUT_DIR \
      --inference_split val --inference_model_step $STEP \
      --inference_txt_db $TXT_DB \
      --inference_img_db $IMG_DB --inference_batch_size 64 \
      --inference_n_clips $INFERENCE_N_CLIPS

    $STEP is an integer, it tells the script to use the checkpoint $OUTPUT_DIR/ckpt/model_step_$STEP.pt for inference. $TXT_DB and $IMG_DB are path to annotation file and video data. You can use TXT_DB=/txt/downstream/msrvtt_retrieval/msrvtt_retrieval_val.jsonl and IMG_DB=/img/msrvtt for inference on MSRVTT retrieval val split. The results will be written under $OUTPUT_DIR. You can use different $INFERENCE_N_CLIPS for inference, such as 1 or 16. Using more clips will have a large impact on inference speed and memory usage. You may want to use smaller batch sizes if larger values are set.

    After MSRVTT retrieval model is trained, you can use it for inference for the MSRVTT MC Test task as well, which is essentially a retrieval task in a multiple-choice task setup.

    # inside the container
    horovodrun -np 4 python src/tasks/run_msrvtt_mc.py \
      --do_inference 1 --output_dir $OUTPUT_DIR \
      --inference_split val --inference_model_step $STEP \
      --inference_txt_db /txt/downstream/msrvtt_retrieval_mc/msrvtt_retrieval_mc_test.jsonl \
      --inference_img_db /img/msrvtt --inference_batch_size 64 \
      --inference_n_clips $INFERENCE_N_CLIPS

Video Question Answering

Tasks: TGIF-QA action, transition, and frameQA tasks; MSRVTT-QA.

  1. Download data.

    # outside the container  
    # download MSRVTT videos, and QA + retrieval annotations
    bash scripts/download_msrvtt.sh $PATH_TO_STORAGE  
    # download TGIF-QA videos and annotations
    bash scripts/download_tgif_qa.sh $PATH_TO_STORAGE  
  2. Finetuning.

    # inside the container
    horovodrun -np 4 python src/tasks/run_video_qa.py \
        --config $CONFIG_PATH \
        --output_dir $OUTPUT_DIR

    $CONFIG_PATH should be set to one of the .json config files available at src/configs contains the substring _qa. For example, you can use src/configs/msrvtt_qa_base_resnet50.json for MSRVTT-QA.

  3. Run inference.

    # inside the container
    horovodrun -np 4 python src/tasks/run_video_qa.py \
      --do_inference 1 --output_dir $OUTPUT_DIR \
      --inference_split val --inference_model_step $STEP \
      --inference_txt_db $TXT_DB \
      --inference_img_db $IMG_DB --inference_batch_size 64 \
      --inference_n_clips $INFERENCE_N_CLIPS

    $STEP is an integer, which tells the script to use the checkpoint $OUTPUT_DIR/ckpt/model_step_$STEP.pt for inference. $TXT_DB and $IMG_DB are path to annotation file and video data. You can use TXT_DB=/txt/downstream/msrvtt_retrieval/msrvtt_qa_val.jsonl and IMG_DB=/img/msrvtt for inference on MSRVTT QA val split.

    The results will be written under $OUTPUT_DIR. You can use different $INFERENCE_N_CLIPS for inference, such as 1 or 16. Using more clips will have a large impact on inference speed and memory usage. You may want to use smaller batch sizes if larger values are set.

Image Question Answering (VQA)

  1. Download data

    # outside the container
    # download COCO and VG data
    bash scripts/download_coco_vg.sh $PATH_TO_STORAGE
    # download VQA annotations
    bash scripts/download_vqa.sh $PATH_TO_STORAGE
  2. Finetuning

    # inside the container
    horovodrun -np 4 python src/tasks/run_vqa.py \
        --config src/configs/vqa_base_resnet50.json \
        --output_dir $OUTPUT_DIR
  3. Inference

    # inside the container
    horovodrun -np 4 python src/tasks/run_vqa.py \
      --do_inference 1 --output_dir $OUTPUT_DIR \
      --inference_split val --inference_model_step $STEP \
      --inference_txt_db $TXT_DB \
      --inference_img_db $IMG_DB \
      --inference_batch_size 64

Pretraining

  1. Download data

    # outside the container
    bash scripts/download_coco_vg.sh $PATH_TO_STORAGE
  2. Pretraining

    #inside the container
    horovodrun -np 8 python src/pretrain/run_pretrain.py \
        --config src/configs/pretrain_indomain_base_resnet50_mlm_itm.json \
        --output_dir $OUTPUT_DIR 

Data Preprocessing

ClipBERT takes raw video and text as inputs, there is no need to do feature extraction. However, to improve data loading speed, we use LMDB to store the raw image and video files. You can use the following script to convert a list of videos with file extensions mp4 and avi into LMDB:

# outside the container
python src/preprocessing/file2lmdb.py \
    --data_root /path/to/videos \
    --lmdb_save_dir /path/to/save/lmdb \
    --ext avi mp4 \
    --file_type video 

For images, use appropriate file extensions for --ext and --file_type image. Text annotation files are reorganized into jsonl files, see example preprocessed files downloaded by the scripts in scripts/.

Citation

If you find this code useful for your research, please consider citing:

@article{lei2021less,
  title={Less is More: ClipBERT for Video-and-Language Learningvia Sparse Sampling},
  author={Lei, Jie and Li, Linjie and Zhou, Luowei and Gan, Zhe and Berg, Tamara L. and Bansal, Mohit and Liu, Jingjing},
  journal={arXiv},
  year={2021}
}

Acknowledgement

We thank Yen-Chun Chen and Ruotian Luo for suggestions on the implementation. We also thank other members and interns at Microsoft Multimodal AI for their helpful discussions.

This code used resources from transformers, UNITER, HERO, grid-feats-vqa, SlowFast, Detectron2. The code is implemented using PyTorch, with multi-GPU support from Horovod and mixed precision support from apex. We thank the authors for open-sourcing their awesome projects.

License

MIT

Owner
Jie Lei 雷杰
UNC CS PhD student, vision+language.
Jie Lei 雷杰
Machine learning models from Singapore's NLP research community

SG-NLP Machine learning models from Singapore's natural language processing (NLP) research community. sgnlp is a Python package that allows you to eas

AI Singapore | AI Makerspace 21 Dec 17, 2022
ConvBERT: Improving BERT with Span-based Dynamic Convolution

ConvBERT Introduction In this repo, we introduce a new architecture ConvBERT for pre-training based language model. The code is tested on a V100 GPU.

YITUTech 237 Dec 10, 2022
This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summarization for 1500+ Language Pairs".

CrossSum This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summ

BUET CSE NLP Group 29 Nov 19, 2022
Learning to Rewrite for Non-Autoregressive Neural Machine Translation

RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv

Xinwei Geng 20 Dec 25, 2022
PG-19 Language Modelling Benchmark

PG-19 Language Modelling Benchmark This repository contains the PG-19 language modeling benchmark. It includes a set of books extracted from the Proje

DeepMind 161 Oct 30, 2022
SurvTRACE: Transformers for Survival Analysis with Competing Events

⭐ SurvTRACE: Transformers for Survival Analysis with Competing Events This repo provides the implementation of SurvTRACE for survival analysis. It is

Zifeng 13 Oct 06, 2022
2021 2학기 데이터크롤링 기말프로젝트

공지 주제 웹 크롤링을 이용한 취업 공고 스케줄러 스케줄 주제 정하기 코딩하기 핵심 코드 설명 + 피피티 구조 구상 // 12/4 토 피피티 + 스크립트(대본) 제작 + 녹화 // ~ 12/10 ~ 12/11 금~토 영상 편집 // ~12/11 토 웹크롤러 사람인_평균

Choi Eun Jeong 2 Aug 16, 2022
🗣️ NALP is a library that covers Natural Adversarial Language Processing.

NALP: Natural Adversarial Language Processing Welcome to NALP. Have you ever wanted to create natural text from raw sources? If yes, NALP is for you!

Gustavo Rosa 21 Aug 12, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

Justin Terry 32 Nov 09, 2021
American Sign Language (ASL) to Text Converter

Signterpreter American Sign Language (ASL) to Text Converter Recommendations Although there is grayscale and gaussian blur, we recommend that you use

0 Feb 20, 2022
使用pytorch+transformers复现了SimCSE论文中的有监督训练和无监督训练方法

SimCSE复现 项目描述 SimCSE是一种简单但是很巧妙的NLP对比学习方法,创新性地引入Dropout的方式,对样本添加噪声,从而达到对正样本增强的目的。 该框架的训练目的为:对于batch中的每个样本,拉近其与正样本之间的距离,拉远其与负样本之间的距离,使得模型能够在大规模无监督语料(也可以

58 Dec 20, 2022
ACL'2021: Learning Dense Representations of Phrases at Scale

DensePhrases DensePhrases is an extractive phrase search tool based on your natural language inputs. From 5 million Wikipedia articles, it can search

Princeton Natural Language Processing 540 Dec 30, 2022
Example code for "Real-World Natural Language Processing"

Real-World Natural Language Processing This repository contains example code for the book "Real-World Natural Language Processing." AllenNLP (2.5.0 or

Masato Hagiwara 303 Dec 17, 2022
Simple python code to fix your combo list by removing any text after a separator or removing duplicate combos

Combo List Fixer A simple python code to fix your combo list by removing any text after a separator or removing duplicate combos Removing any text aft

Hamidreza Dehghan 3 Dec 05, 2022
Community and sentiment analysis based on tweets

The project has set itself the goal of analyzing the thoughts and interaction of Italian users through the social posts expressed through the Twitter platform on the day of the entry into force of th

3 Nov 17, 2022
A library for end-to-end learning of embedding index and retrieval model

Poeem Poeem is a library for efficient approximate nearest neighbor (ANN) search, which has been widely adopted in industrial recommendation, advertis

54 Dec 21, 2022
Chinese Grammatical Error Diagnosis

nlp-CGED Chinese Grammatical Error Diagnosis 中文语法纠错研究 基于序列标注的方法 所需环境 Python==3.6 tensorflow==1.14.0 keras==2.3.1 bert4keras==0.10.6 笔者使用了开源的bert4keras

12 Nov 25, 2022
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

OpenNMT 5.8k Jan 04, 2023
Blazing fast language detection using fastText model

Luga A blazing fast language detection using fastText's language models Luga is a Swahili word for language. fastText provides a blazing fast language

Prayson Wilfred Daniel 18 Dec 20, 2022
SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021