This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Overview

Word-Level Coreference Resolution

This is a repository with the code to reproduce the experiments described in the paper of the same name, which was accepted to EMNLP 2021. The paper is available here.

Table of contents

  1. Preparation
  2. Training
  3. Evaluation

Preparation

The following instruction has been tested with Python 3.7 on an Ubuntu 20.04 machine.

You will need:

  • OntoNotes 5.0 corpus (download here, registration needed)
  • Python 2.7 to run conll-2012 scripts
  • Java runtime to run Stanford Parser
  • Python 3.7+ to run the model
  • Perl to run conll-2012 evaluation scripts
  • CUDA-enabled machine (48 GB to train, 4 GB to evaluate)
  1. Extract OntoNotes 5.0 arhive. In case it's in the repo's root directory:

     tar -xzvf ontonotes-release-5.0_LDC2013T19.tgz
    
  2. Switch to Python 2.7 environment (where python would run 2.7 version). This is necessary for conll scripts to run correctly. To do it with with conda:

     conda create -y --name py27 python=2.7 && conda activate py27
    
  3. Run the conll data preparation scripts (~30min):

     sh get_conll_data.sh ontonotes-release-5.0 data
    
  4. Download conll scorers and Stanford Parser:

     sh get_third_party.sh
    
  5. Prepare your environment. To do it with conda:

     conda create -y --name wl-coref python=3.7 openjdk perl
     conda activate wl-coref
     python -m pip install -r requirements.txt
    
  6. Build the corpus in jsonlines format (~20 min):

     python convert_to_jsonlines.py data/conll-2012/ --out-dir data
     python convert_to_heads.py
    

You're all set!

Training

If you have completed all the steps in the previous section, then just run:

python run.py train roberta

Use -h flag for more parameters and CUDA_VISIBLE_DEVICES environment variable to limit the cuda devices visible to the script. Refer to config.toml to modify existing model configurations or create your own.

Evaluation

Make sure that you have successfully completed all steps of the Preparation section.

  1. Download and save the pretrained model to the data directory.

     https://www.dropbox.com/s/vf7zadyksgj40zu/roberta_%28e20_2021.05.02_01.16%29_release.pt?dl=0
    
  2. Generate the conll-formatted output:

     python run.py eval roberta --data-split test
    
  3. Run the conll-2012 scripts to obtain the metrics:

     python calculate_conll.py roberta test 20
    
A2T: Towards Improving Adversarial Training of NLP Models (EMNLP 2021 Findings)

A2T: Towards Improving Adversarial Training of NLP Models This is the source code for the EMNLP 2021 (Findings) paper "Towards Improving Adversarial T

QData 17 Oct 15, 2022
Train and use generative text models in a few lines of code.

blather Train and use generative text models in a few lines of code. To see blather in action check out the colab notebook! Installation Use the packa

Dan Carroll 16 Nov 07, 2022
Textlesslib - Library for Textless Spoken Language Processing

textlesslib Textless NLP is an active area of research that aims to extend NLP t

Meta Research 379 Dec 27, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Approximately Correct Machine Intelligence (ACMI) Lab 21 Nov 24, 2022
In this project, we compared Spanish BERT and Multilingual BERT in the Sentiment Analysis task.

Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews Abstract Sentiment analysis has made great progress in recent years, due to th

Alexander Leonardo Lique Lamas 5 Jan 03, 2022
Linking data between GBIF, Biodiverse, and Open Tree of Life

GBIF-biodiverse-OpenTree Linking data between GBIF, Biodiverse, and Open Tree of Life The python scripts will rely on opentree and Dendropy. To set up

2 Oct 03, 2022
VoiceFixer VoiceFixer is a framework for general speech restoration.

VoiceFixer VoiceFixer is a framework for general speech restoration. We aim at the restoration of severly degraded speech and historical speech. Paper

Leo 174 Jan 06, 2023
Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
A fast and lightweight python-based CTC beam search decoder for speech recognition.

pyctcdecode A fast and feature-rich CTC beam search decoder for speech recognition written in Python, providing n-gram (kenlm) language model support

Kensho 315 Dec 21, 2022
In this Notebook I've build some machine-learning and deep-learning to classify corona virus tweets, in both multi class classification and binary classification.

Hello, This Notebook Contains Example of Corona Virus Tweets Multi Class Classification. - Classes is: Extremely Positive, Positive, Extremely Negativ

Khaled Tofailieh 3 Dec 06, 2022
Various Algorithms for Short Text Mining

Short Text Mining in Python Introduction This package shorttext is a Python package that facilitates supervised and unsupervised learning for short te

Kwan-Yuet 466 Dec 06, 2022
SHAS: Approaching optimal Segmentation for End-to-End Speech Translation

SHAS: Approaching optimal Segmentation for End-to-End Speech Translation In this repo you can find the code of the Supervised Hybrid Audio Segmentatio

Machine Translation @ UPC 21 Dec 20, 2022
A retro text-to-speech bot for Discord

hawking A retro text-to-speech bot for Discord, designed to work with all of the stuff you might've seen in Moonbase Alpha, using the existing command

Nick Schorr 23 Dec 25, 2022
Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP)

Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP) predictions: part-of-speech (POS) tags, chunking (CHK), name entity recognition (

jawahar 20 Apr 30, 2022
An official repository for tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a University of Edinburgh master's course.

PMR computer tutorials on HMMs (2021-2022) This is a repository for computer tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a Univer

Vaidotas Å imkus 10 Dec 06, 2022
Natural Language Processing with transformers

we want to create a repo to illustrate usage of transformers in chinese

Datawhale 763 Dec 27, 2022
MicBot - MicBot uses Google Translate to speak everyone's chat messages

MicBot MicBot uses Google Translate to speak everyone's chat messages. It can al

2 Mar 09, 2022
Search with BERT vectors in Solr and Elasticsearch

Search with BERT vectors in Solr and Elasticsearch

Dmitry Kan 123 Dec 29, 2022
Scene Text Retrieval via Joint Text Detection and Similarity Learning

This is the code of "Scene Text Retrieval via Joint Text Detection and Similarity Learning". For more details, please refer to our CVPR2021 paper.

79 Nov 29, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

LancoPKU 105 Jan 03, 2023