DeepOBS: A Deep Learning Optimizer Benchmark Suite

Related tags

Deep LearningDeepOBS
Overview

DeepOBS - A Deep Learning Optimizer Benchmark Suite

DeepOBS

PyPI version Documentation Status License: MIT

DeepOBS is a benchmarking suite that drastically simplifies, automates and improves the evaluation of deep learning optimizers.

It can evaluate the performance of new optimizers on a variety of real-world test problems and automatically compare them with realistic baselines.

DeepOBS automates several steps when benchmarking deep learning optimizers:

  • Downloading and preparing data sets.
  • Setting up test problems consisting of contemporary data sets and realistic deep learning architectures.
  • Running the optimizers on multiple test problems and logging relevant metrics.
  • Reporting and visualization the results of the optimizer benchmark.

DeepOBS Output

This branch contains the beta of version 1.2.0 with TensorFlow and PyTorch support. It is currently in a pre-release state. Not all features are implemented and most notably we currently don't provide baselines for this version.

The full documentation of this beta version is available on readthedocs: https://deepobs-with-pytorch.readthedocs.io/

The paper describing DeepOBS has been accepted for ICLR 2019 and can be found here: https://openreview.net/forum?id=rJg6ssC5Y7

If you find any bugs in DeepOBS, or find it hard to use, please let us know. We are always interested in feedback and ways to improve DeepOBS.

Installation

pip install -e git+https://github.com/fsschneider/[email protected]#egg=DeepOBS

We tested the package with Python 3.6, TensorFlow version 1.12, Torch version 1.1.0 and Torchvision version 0.3.0. Other versions might work, and we plan to expand compatibility in the future.

Further tutorials and a suggested protocol for benchmarking deep learning optimizers can be found on https://deepobs-with-pytorch.readthedocs.io/

Comments
  • Request: Share the hyper-parameters found in the grid search

    Request: Share the hyper-parameters found in the grid search

    To lessen the burden of re-running the benchmark, would it be possible to publish the optimal hyper-parameters somewhere?

    By-reusing those hyper-parameters, one would avoid the most computationally-demanding part of reproducing the results (by 1-2 orders of magnitude).

    opened by jotaf98 2
  • Add functionality to skip existing runs, plotting modes, some refactoring

    Add functionality to skip existing runs, plotting modes, some refactoring

    • Adding parameter skip_if_exists to runner.run
      • Default value is set such that the current behavior is maintained
      • By setting to True, runs that already have a .json output file will not be executed again
    • Possible extensions
      • Make skip_if_exists arg-parsable
    opened by f-dangel 2
  • KeyError: 'optimizer_hyperparams'

    KeyError: 'optimizer_hyperparams'

    (Apologies for creating multiple issues in a row -- it seemed more clean to keep them separate.)

    I downloaded the data from DeepOBS_Baselines, and attempted to run example_analyze_pytorch.py. Unfortunately DeepOBS seems to look for keys in the JSON files that don't exist:

    $ python example_analyze_pytorch.py
    /users/user/Research/deepobs/deepobs/analyzer/shared_utils.py:144: RuntimeWarning: Metric valid_accu
    racies does not exist for testproblem quadratic_deep. We now use fallback metric valid_losses
      default_metric), RuntimeWarning)
    /users/user/Research/deepobs/deepobs/analyzer/shared_utils.py:229: RuntimeWarning: All settings for
    /scratch/local/ssd/user/data/deepobs/quadratic_deep/SGD on test problem quadratic_deep have the same
     number of seeds runs. Mode 'most' does not make sense and we use the fallback mode 'final'
      .format(optimizer_path, testproblem_name), RuntimeWarning)
    {'Performance': 127.96759578159877, 'Speed': 'N.A.', 'Hyperparameters': {'lr': 0.01, 'momentum': 0.9
    9, 'nesterov': False}, 'Training Parameters': {}}
    /users/user/Research/deepobs/deepobs/analyzer/shared_utils.py:144: RuntimeWarning: Metric valid_accu
    racies does not exist for testproblem quadratic_deep. We now use fallback metric valid_losses
      default_metric), RuntimeWarning)
    /users/user/Research/deepobs/deepobs/analyzer/shared_utils.py:229: RuntimeWarning: All settings for
    /scratch/local/ssd/user/data/deepobs/quadratic_deep/SGD on test problem quadratic_deep have the same
     number of seeds runs. Mode 'most' does not make sense and we use the fallback mode 'final'
      .format(optimizer_path, testproblem_name), RuntimeWarning)
    /users/user/Research/deepobs/deepobs/analyzer/shared_utils.py:150: RuntimeWarning: Cannot fallback t
    o metric valid_losses for optimizer MomentumOptimizer on testproblem quadratic_deep. Will now fallba
    ck to metric test_losses
      testproblem_name), RuntimeWarning)
    /users/user/miniconda3/lib/python3.7/site-packages/numpy/core/_methods.py:193: RuntimeWarning: inva$
    id value encountered in subtract
      x = asanyarray(arr - arrmean)
    /users/user/miniconda3/lib/python3.7/site-packages/numpy/lib/function_base.py:3949: RuntimeWarning:
    invalid value encountered in multiply
      x2 = take(ap, indices_above, axis=axis) * weights_above
    Traceback (most recent call last):
      File "example_analyze_pytorch.py", line 17, in <module>
        analyzer.plot_optimizer_performance(result_path, reference_path=base + '/deepobs/baselines/quad$
    atic_deep/MomentumOptimizer')
      File "/users/user/Research/deepobs/deepobs/analyzer/analyze.py", line 514, in plot_optimizer_perfo
    rmance
        which=which)
      File "/users/user/Research/deepobs/deepobs/analyzer/analyze.py", line 462, in _plot_optimizer_perf
    ormance
        optimizer_path, mode, metric)
      File "/users/user/Research/deepobs/deepobs/analyzer/shared_utils.py", line 206, in create_setting_
    analyzer_ranking
        setting_analyzers = _get_all_setting_analyzer(optimizer_path)
      File "/users/user/Research/deepobs/deepobs/analyzer/shared_utils.py", line 184, in _get_all_settin
    g_analyzer
        setting_analyzers.append(SettingAnalyzer(sett_path))
      File "/users/user/Research/deepobs/deepobs/analyzer/shared_utils.py", line 260, in __init__
        self.aggregate = aggregate_runs(path)
      File "/users/user/Research/deepobs/deepobs/analyzer/shared_utils.py", line 101, in aggregate_runs
        aggregate['optimizer_hyperparams'] = json_data['optimizer_hyperparams']
    KeyError: 'optimizer_hyperparams'
    

    One of the JSON files in question looks like this (data points snipped for brevity):

    {
    "train_losses": [353.9337594168527, 347.5994306291853, 331.35902622767856, 307.2468915666853, ... 97.28871154785156, 91.45470428466797, 96.45774841308594, 86.27237701416016],
    "optimizer": "MomentumOptimizer",
    "testproblem": "quadratic_deep",
    "weight_decay": null,
    "batch_size": 128,
    "num_epochs": 100,
    "learning_rate": 1e-05,
    "lr_sched_epochs": null,
    "lr_sched_factors": null,
    "random_seed": 42,
    "train_log_interval": 1,
    "hyperparams": {"momentum": 0.99, "use_nesterov": false}
    }
    

    The obvious key seems to be hyperparams as opposed to optimizer_hyperparams; this occurs only for some JSON files.

    Edit: Having fixed this, there is a further key error on training_params. Perhaps these were generated with different versions of the package.

    opened by jotaf98 3
  • Installation error / unmentioned dependency

    Installation error / unmentioned dependency "bayes_opt"

    Attempting to install by following the documentation's instructions, after installing all the mentioned dependencies with conda, results in the following error:

    (base) [email protected]:~$ pip install -e git+https://github.com/abahde/[email protected]#egg=DeepOBS
    Obtaining DeepOBS from git+https://github.com/abahde/[email protected]#egg=DeepOBS
      Cloning https://github.com/abahde/DeepOBS.git (to revision master) to ./src/deepobs
      Running command git clone -q https://github.com/abahde/DeepOBS.git /users/user/src/deepobs
        ERROR: Complete output from command python setup.py egg_info:
        ERROR: Traceback (most recent call last):
          File "<string>", line 1, in <module>
          File "/users/user/src/deepobs/setup.py", line 5, in <module>
            from deepobs import __version__
          File "/users/user/src/deepobs/deepobs/__init__.py", line 5, in <module>
            from . import analyzer
          File "/users/user/src/deepobs/deepobs/analyzer/__init__.py", line 2, in <module>
            from . import analyze
          File "/users/user/src/deepobs/deepobs/analyzer/analyze.py", line 12, in <module>
            from ..tuner.tuner_utils import generate_tuning_summary
          File "/users/user/src/deepobs/deepobs/tuner/__init__.py", line 4, in <module>
            from .bayesian import GP
          File "/users/user/src/deepobs/deepobs/tuner/bayesian.py", line 3, in <module>
            from bayes_opt import UtilityFunction
        ModuleNotFoundError: No module named 'bayes_opt'
        ----------------------------------------
    ERROR: Command "python setup.py egg_info" failed with error code 1 in /users/user/src/deepobs/
    

    Is this bayes_opt package really necessary? It seems a bit tangential to the package's purpose (or at most optional).

    Edit: It turns out that bayesian-optimization has relatively few requirements so this is not a big issue; perhaps just the docs need updating.

    As an aside, it might be possible to suggest a single conda command that installs everything: conda install -c conda-forge seaborn matplotlib2tikz bayesian-optimization.

    opened by jotaf98 0
  • Wall-clock time plots

    Wall-clock time plots

    Optimizers can have very different runtimes per iteration, especially 2nd-order ones.

    This means that sometimes, despite promises of "faster" convergence, the wall-clock time taken to converge is disappointingly larger.

    Is there any chance DeepOBS could implement wall-clock time plots, in addition to per-epoch ones? (E.g. X axis in minutes or hours.)

    opened by jotaf98 4
  • Improve estimate_runtime()

    Improve estimate_runtime()

    There are a couple of improvements that I suggest:

    • [ ] Return the results not as a string, but as a dict or an object.
    • [ ] (Maybe, think about that) Include the ability to test multiple optimizers simultaneously.
    • [ ] Report standard deviation and individual runtimes for SGD.
    • [ ] Add a function that generates a figure, similar to https://github.com/ludwigbald/probprec/blob/master/code/exp_perf_prec/analyze.py
    opened by ludwigbald 0
  • Implement validation set split also for TensorFlow

    Implement validation set split also for TensorFlow

    In PyTorch we split the validation set from the training set randomly. It has the size of the test set. The validation performance is used by the tuner and analyzer to obtain the best instance. This split should be implemented in the TensorFlow data sets as well. We have already prepared the test problem and the runner implementations for this change. The only change that needs to be done to the runner is marked in the code with a ToDo flag.

    bug enhancement 
    opened by abahde 0
Releases(v1.2.0-beta)
  • v1.2.0-beta(Sep 17, 2019)

    Draft of release notes:

    • A PyTorch implementation (though not for all test problems yet)
    • A refactored Analyzer module (more flexibility and interpretability)
    • A Tuning module that automates the tuning process
    • Some minor improvements of the TensorFlow code (important bugfix: fmnist_mlp now really uses F-MNIST and not MNIST)
    • For the PyTorch code a validation set metric for each test problem. However, so far, the TensorFlow code comes without validation sets.
    • Runners now break from training if the loss becomes NaN.
    • Runners now return the output dictionary.
    • Additional training parameters can be passed as kwargs to the run() method.
    • Numpy is now also seeded.
    • Small and large benchmark sets are now global variables in DeepOBS.
    • Default test problem settings are now a global variable in DeepOBS.
    • JSON output is now dumped in human readable format.
    • Accuracy is now only printed if available.
    • Simplified Runner API.
    • Learning Rate Schedule Runner is now an extra class.
    Source code(tar.gz)
    Source code(zip)
Owner
Aaron Bahde
Graduate student at the University of Tübingen, Methods of Machine Learning
Aaron Bahde
Texture mapping with variational auto-encoders

vae-textures This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using J

Alex Nichol 41 May 24, 2022
Model Agnostic Interpretability for Multiple Instance Learning

MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa

Joe Early 10 Dec 17, 2022
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision. The goal is to create a fast, flexible and user-frien

Labrak Yanis 166 Nov 27, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
This is the face keypoint train code of project face-detection-project

face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_

I‘m X 3 Nov 27, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
Perfect implement. Model shared. x0.5 (Top1:60.646) and 1.0x (Top1:69.402).

Shufflenet-v2-Pytorch Introduction This is a Pytorch implementation of faceplusplus's ShuffleNet-v2. For details, please read the following papers:

423 Dec 07, 2022
Code for "R-GCN: The R Could Stand for Random"

RR-GCN: Random Relational Graph Convolutional Networks PyTorch Geometric code for the paper "R-GCN: The R Could Stand for Random" RR-GCN is an extensi

PreDiCT.IDLab 31 Sep 07, 2022
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
Codebase for ECCV18 "The Sound of Pixels"

Sound-of-Pixels Codebase for ECCV18 "The Sound of Pixels". *This repository is under construction, but the core parts are already there. Environment T

Hang Zhao 318 Dec 20, 2022
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.

DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)

Google 149 Dec 19, 2022
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

Electronic Arts 684 Dec 26, 2022
Fast and accurate optimisation for registration with little learningconvexadam

convexAdam Learn2Reg 2021 Submission Fast and accurate optimisation for registration with little learning Excellent results on Learn2Reg 2021 challeng

17 Dec 06, 2022