DeepOBS: A Deep Learning Optimizer Benchmark Suite

Related tags

Deep LearningDeepOBS
Overview

DeepOBS - A Deep Learning Optimizer Benchmark Suite

DeepOBS

PyPI version Documentation Status License: MIT

DeepOBS is a benchmarking suite that drastically simplifies, automates and improves the evaluation of deep learning optimizers.

It can evaluate the performance of new optimizers on a variety of real-world test problems and automatically compare them with realistic baselines.

DeepOBS automates several steps when benchmarking deep learning optimizers:

  • Downloading and preparing data sets.
  • Setting up test problems consisting of contemporary data sets and realistic deep learning architectures.
  • Running the optimizers on multiple test problems and logging relevant metrics.
  • Reporting and visualization the results of the optimizer benchmark.

DeepOBS Output

This branch contains the beta of version 1.2.0 with TensorFlow and PyTorch support. It is currently in a pre-release state. Not all features are implemented and most notably we currently don't provide baselines for this version.

The full documentation of this beta version is available on readthedocs: https://deepobs-with-pytorch.readthedocs.io/

The paper describing DeepOBS has been accepted for ICLR 2019 and can be found here: https://openreview.net/forum?id=rJg6ssC5Y7

If you find any bugs in DeepOBS, or find it hard to use, please let us know. We are always interested in feedback and ways to improve DeepOBS.

Installation

pip install -e git+https://github.com/fsschneider/[email protected]#egg=DeepOBS

We tested the package with Python 3.6, TensorFlow version 1.12, Torch version 1.1.0 and Torchvision version 0.3.0. Other versions might work, and we plan to expand compatibility in the future.

Further tutorials and a suggested protocol for benchmarking deep learning optimizers can be found on https://deepobs-with-pytorch.readthedocs.io/

Comments
  • Request: Share the hyper-parameters found in the grid search

    Request: Share the hyper-parameters found in the grid search

    To lessen the burden of re-running the benchmark, would it be possible to publish the optimal hyper-parameters somewhere?

    By-reusing those hyper-parameters, one would avoid the most computationally-demanding part of reproducing the results (by 1-2 orders of magnitude).

    opened by jotaf98 2
  • Add functionality to skip existing runs, plotting modes, some refactoring

    Add functionality to skip existing runs, plotting modes, some refactoring

    • Adding parameter skip_if_exists to runner.run
      • Default value is set such that the current behavior is maintained
      • By setting to True, runs that already have a .json output file will not be executed again
    • Possible extensions
      • Make skip_if_exists arg-parsable
    opened by f-dangel 2
  • KeyError: 'optimizer_hyperparams'

    KeyError: 'optimizer_hyperparams'

    (Apologies for creating multiple issues in a row -- it seemed more clean to keep them separate.)

    I downloaded the data from DeepOBS_Baselines, and attempted to run example_analyze_pytorch.py. Unfortunately DeepOBS seems to look for keys in the JSON files that don't exist:

    $ python example_analyze_pytorch.py
    /users/user/Research/deepobs/deepobs/analyzer/shared_utils.py:144: RuntimeWarning: Metric valid_accu
    racies does not exist for testproblem quadratic_deep. We now use fallback metric valid_losses
      default_metric), RuntimeWarning)
    /users/user/Research/deepobs/deepobs/analyzer/shared_utils.py:229: RuntimeWarning: All settings for
    /scratch/local/ssd/user/data/deepobs/quadratic_deep/SGD on test problem quadratic_deep have the same
     number of seeds runs. Mode 'most' does not make sense and we use the fallback mode 'final'
      .format(optimizer_path, testproblem_name), RuntimeWarning)
    {'Performance': 127.96759578159877, 'Speed': 'N.A.', 'Hyperparameters': {'lr': 0.01, 'momentum': 0.9
    9, 'nesterov': False}, 'Training Parameters': {}}
    /users/user/Research/deepobs/deepobs/analyzer/shared_utils.py:144: RuntimeWarning: Metric valid_accu
    racies does not exist for testproblem quadratic_deep. We now use fallback metric valid_losses
      default_metric), RuntimeWarning)
    /users/user/Research/deepobs/deepobs/analyzer/shared_utils.py:229: RuntimeWarning: All settings for
    /scratch/local/ssd/user/data/deepobs/quadratic_deep/SGD on test problem quadratic_deep have the same
     number of seeds runs. Mode 'most' does not make sense and we use the fallback mode 'final'
      .format(optimizer_path, testproblem_name), RuntimeWarning)
    /users/user/Research/deepobs/deepobs/analyzer/shared_utils.py:150: RuntimeWarning: Cannot fallback t
    o metric valid_losses for optimizer MomentumOptimizer on testproblem quadratic_deep. Will now fallba
    ck to metric test_losses
      testproblem_name), RuntimeWarning)
    /users/user/miniconda3/lib/python3.7/site-packages/numpy/core/_methods.py:193: RuntimeWarning: inva$
    id value encountered in subtract
      x = asanyarray(arr - arrmean)
    /users/user/miniconda3/lib/python3.7/site-packages/numpy/lib/function_base.py:3949: RuntimeWarning:
    invalid value encountered in multiply
      x2 = take(ap, indices_above, axis=axis) * weights_above
    Traceback (most recent call last):
      File "example_analyze_pytorch.py", line 17, in <module>
        analyzer.plot_optimizer_performance(result_path, reference_path=base + '/deepobs/baselines/quad$
    atic_deep/MomentumOptimizer')
      File "/users/user/Research/deepobs/deepobs/analyzer/analyze.py", line 514, in plot_optimizer_perfo
    rmance
        which=which)
      File "/users/user/Research/deepobs/deepobs/analyzer/analyze.py", line 462, in _plot_optimizer_perf
    ormance
        optimizer_path, mode, metric)
      File "/users/user/Research/deepobs/deepobs/analyzer/shared_utils.py", line 206, in create_setting_
    analyzer_ranking
        setting_analyzers = _get_all_setting_analyzer(optimizer_path)
      File "/users/user/Research/deepobs/deepobs/analyzer/shared_utils.py", line 184, in _get_all_settin
    g_analyzer
        setting_analyzers.append(SettingAnalyzer(sett_path))
      File "/users/user/Research/deepobs/deepobs/analyzer/shared_utils.py", line 260, in __init__
        self.aggregate = aggregate_runs(path)
      File "/users/user/Research/deepobs/deepobs/analyzer/shared_utils.py", line 101, in aggregate_runs
        aggregate['optimizer_hyperparams'] = json_data['optimizer_hyperparams']
    KeyError: 'optimizer_hyperparams'
    

    One of the JSON files in question looks like this (data points snipped for brevity):

    {
    "train_losses": [353.9337594168527, 347.5994306291853, 331.35902622767856, 307.2468915666853, ... 97.28871154785156, 91.45470428466797, 96.45774841308594, 86.27237701416016],
    "optimizer": "MomentumOptimizer",
    "testproblem": "quadratic_deep",
    "weight_decay": null,
    "batch_size": 128,
    "num_epochs": 100,
    "learning_rate": 1e-05,
    "lr_sched_epochs": null,
    "lr_sched_factors": null,
    "random_seed": 42,
    "train_log_interval": 1,
    "hyperparams": {"momentum": 0.99, "use_nesterov": false}
    }
    

    The obvious key seems to be hyperparams as opposed to optimizer_hyperparams; this occurs only for some JSON files.

    Edit: Having fixed this, there is a further key error on training_params. Perhaps these were generated with different versions of the package.

    opened by jotaf98 3
  • Installation error / unmentioned dependency

    Installation error / unmentioned dependency "bayes_opt"

    Attempting to install by following the documentation's instructions, after installing all the mentioned dependencies with conda, results in the following error:

    (base) [email protected]:~$ pip install -e git+https://github.com/abahde/[email protected]#egg=DeepOBS
    Obtaining DeepOBS from git+https://github.com/abahde/[email protected]#egg=DeepOBS
      Cloning https://github.com/abahde/DeepOBS.git (to revision master) to ./src/deepobs
      Running command git clone -q https://github.com/abahde/DeepOBS.git /users/user/src/deepobs
        ERROR: Complete output from command python setup.py egg_info:
        ERROR: Traceback (most recent call last):
          File "<string>", line 1, in <module>
          File "/users/user/src/deepobs/setup.py", line 5, in <module>
            from deepobs import __version__
          File "/users/user/src/deepobs/deepobs/__init__.py", line 5, in <module>
            from . import analyzer
          File "/users/user/src/deepobs/deepobs/analyzer/__init__.py", line 2, in <module>
            from . import analyze
          File "/users/user/src/deepobs/deepobs/analyzer/analyze.py", line 12, in <module>
            from ..tuner.tuner_utils import generate_tuning_summary
          File "/users/user/src/deepobs/deepobs/tuner/__init__.py", line 4, in <module>
            from .bayesian import GP
          File "/users/user/src/deepobs/deepobs/tuner/bayesian.py", line 3, in <module>
            from bayes_opt import UtilityFunction
        ModuleNotFoundError: No module named 'bayes_opt'
        ----------------------------------------
    ERROR: Command "python setup.py egg_info" failed with error code 1 in /users/user/src/deepobs/
    

    Is this bayes_opt package really necessary? It seems a bit tangential to the package's purpose (or at most optional).

    Edit: It turns out that bayesian-optimization has relatively few requirements so this is not a big issue; perhaps just the docs need updating.

    As an aside, it might be possible to suggest a single conda command that installs everything: conda install -c conda-forge seaborn matplotlib2tikz bayesian-optimization.

    opened by jotaf98 0
  • Wall-clock time plots

    Wall-clock time plots

    Optimizers can have very different runtimes per iteration, especially 2nd-order ones.

    This means that sometimes, despite promises of "faster" convergence, the wall-clock time taken to converge is disappointingly larger.

    Is there any chance DeepOBS could implement wall-clock time plots, in addition to per-epoch ones? (E.g. X axis in minutes or hours.)

    opened by jotaf98 4
  • Improve estimate_runtime()

    Improve estimate_runtime()

    There are a couple of improvements that I suggest:

    • [ ] Return the results not as a string, but as a dict or an object.
    • [ ] (Maybe, think about that) Include the ability to test multiple optimizers simultaneously.
    • [ ] Report standard deviation and individual runtimes for SGD.
    • [ ] Add a function that generates a figure, similar to https://github.com/ludwigbald/probprec/blob/master/code/exp_perf_prec/analyze.py
    opened by ludwigbald 0
  • Implement validation set split also for TensorFlow

    Implement validation set split also for TensorFlow

    In PyTorch we split the validation set from the training set randomly. It has the size of the test set. The validation performance is used by the tuner and analyzer to obtain the best instance. This split should be implemented in the TensorFlow data sets as well. We have already prepared the test problem and the runner implementations for this change. The only change that needs to be done to the runner is marked in the code with a ToDo flag.

    bug enhancement 
    opened by abahde 0
Releases(v1.2.0-beta)
  • v1.2.0-beta(Sep 17, 2019)

    Draft of release notes:

    • A PyTorch implementation (though not for all test problems yet)
    • A refactored Analyzer module (more flexibility and interpretability)
    • A Tuning module that automates the tuning process
    • Some minor improvements of the TensorFlow code (important bugfix: fmnist_mlp now really uses F-MNIST and not MNIST)
    • For the PyTorch code a validation set metric for each test problem. However, so far, the TensorFlow code comes without validation sets.
    • Runners now break from training if the loss becomes NaN.
    • Runners now return the output dictionary.
    • Additional training parameters can be passed as kwargs to the run() method.
    • Numpy is now also seeded.
    • Small and large benchmark sets are now global variables in DeepOBS.
    • Default test problem settings are now a global variable in DeepOBS.
    • JSON output is now dumped in human readable format.
    • Accuracy is now only printed if available.
    • Simplified Runner API.
    • Learning Rate Schedule Runner is now an extra class.
    Source code(tar.gz)
    Source code(zip)
Owner
Aaron Bahde
Graduate student at the University of Tübingen, Methods of Machine Learning
Aaron Bahde
ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

Double-zh 45 Dec 19, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
OpenVisionAPI server

🚀 Quick start An instance of ova-server is free and publicly available here: https://api.openvisionapi.com Checkout ova-client for a quick demo. Inst

Open Vision API 93 Nov 24, 2022
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 06, 2022
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022
Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

71 Nov 25, 2022
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection

Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li

Stanislav Fort 35 Jan 03, 2023
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
Tello Drone Trajectory Tracking

With this library you can track the trajectory of your tello drone or swarm of drones in real time.

Kamran Asgarov 2 Oct 12, 2022
App for identification of various objects. Based on YOLO v4 tiny architecture

Object_detection Repository containing trained model yolo v4 tiny, which is capable of identification 80 different classes Default feed is set to be a

Mateusz Kurdziel 0 Jun 22, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
A hobby project which includes a hand-gesture based virtual piano using a mobile phone camera and OpenCV library functions

Overview This is a hobby project which includes a hand-gesture controlled virtual piano using an android phone camera and some OpenCV library. My moti

Abhinav Gupta 1 Nov 19, 2021
OpenMMLab Semantic Segmentation Toolbox and Benchmark.

Documentation: https://mmsegmentation.readthedocs.io/ English | 简体中文 Introduction MMSegmentation is an open source semantic segmentation toolbox based

OpenMMLab 5k Dec 31, 2022
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
Final project for machine learning (CSC 590). Detection of hepatitis C and progression through blood samples.

Hepatitis C Blood Based Detection Final project for machine learning (CSC 590). Dataset from Kaggle. Using data from previous hepatitis C blood panels

Jennefer Maldonado 1 Dec 28, 2021
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022