A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

Overview

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-size volumes of raw events like game history events, clickstream data, purchase history or card transactions.

It supports various methods of self-supervised training, adapted for event sequences:

  • Contrastive Learning for Event Sequences (CoLES)
  • Contrastive Predictive Coding (CPC)
  • Replaced Token Detection (RTD) from ELECTRA
  • Next Sequence Prediction (NSP) from BERT
  • Sequences Order Prediction (SOP) from ALBERT

It supports several types of encoders, including Transformer and RNN. It also supports many types of self-supervised losses.

The following variants of the contrastive losses are supported:

Install from PyPi

pip install pytorch-lifestream

Install from source

# Ubuntu 20.04

sudo apt install python3.8 python3-venv
pip3 install pipenv

pipenv sync  --dev # install packages exactly as specified in Pipfile.lock
pipenv shell
pytest

Demo notebooks

  • Self-supervided training and embeddings for downstream task notebook
  • Self-supervided embeddings in CatBoost notebook
  • Self-supervided training and fine-tuning notebook
  • PySpark and Parquet for data preprocessing notebook

Experiments on public datasets

pytorch-lifestream usage experiments on several public event datasets are available in the separate repo

Comments
  • torch.stack in def collate_feature_dict

    torch.stack in def collate_feature_dict

    ptls/data_load/utils.py

    Hello!

    If the dataloader has a feature called target. And the batchsize is not a multiple of the length of the dataset, then an error pops up on the last batch: "Sizes of tensors must match except in dimension 0". Due to the use of torch.staсk when processing a feature startwith 'target'.

    opened by Ivanich-spb 11
  • Not supported multiGPU option from pytorchlightning.Trainer

    Not supported multiGPU option from pytorchlightning.Trainer

    Try to set Trainer(gpus=[0,1]), while using PtlsDataModule as data module, get such error:

    AttributeError: Can't pickle local object 'PtlsDataModule.__init__.<locals>.train_dataloader'

    opened by mazitovs 1
  • Correct seq_len for feature dict

    Correct seq_len for feature dict

    rec = {
        'mcc': [0, 1, 2, 3],
        'target_distribution': [0.1, 0.2, 0.4, 0.1, 0.1, 0.0],
    }
    

    How to get correct seq_len. true len: 4 possible length: 4, 6 'target_distribution' is incorrect field to get length, this is not a sequence, this is an array

    opened by ivkireev86 1
  • Save categories encodings along with model weights in demos

    Save categories encodings along with model weights in demos

    Вместе с обученной моделью необходимо сохранять обученный препроцессор и разбивку на трейн-тест. Иначе категории могут поехать и сохраненная предобученная модель станет бесполезной.

    opened by ivkireev86 1
  • Documentation index

    Documentation index

    Прототип главной страницы документации. Три секции:

    • описание моделей библиотеки
    • гайд как использовать библиотеку
    • как писать свои компоненты

    Есть краткое описание и ссылки на подробные (которые напишем потом).

    В описании модулей предложена структура библиотеки. Предполагается, что мы эти модули в ближайшее создадим и перетащим туда соответсвующие классы из библиотеки. Старые, модули, которые станут пустыми, удалим. Далее будем придерживаться схемы, описанной в этом документе.

    На ревью предлагается чекнуть предлагаемую структуру библиотеки, названия модулей ну и сам описательный текст документа.

    opened by ivkireev86 1
  • KL cyclostationarity test tools

    KL cyclostationarity test tools

    Test provides a hystogram with self-samples similarity vs. random sample similarity. Shows compatibility with CoLES.

    Think about tests for other frameworks.

    opened by ivkireev86 0
  • Repair pyspark tests

    Repair pyspark tests

    def test_dt_to_timestamp(): spark = SparkSession.builder.getOrCreate() df = spark.createDataFrame(data=[ {'dt': '1970-01-01 00:00:00'}, {'dt': '2012-01-01 12:01:16'}, {'dt': '2021-12-30 00:00:00'} ])

        df = df.withColumn('ts', dt_to_timestamp('dt'))
        ts = [rec.ts for rec in df.select('ts').collect()]
    
      assert ts == [0, 1325419276, 1640822400]
    

    E assert [-10800, 1325...6, 1640811600] == [0, 1325419276, 1640822400] E At index 0 diff: -10800 != 0 E Use -v to get more diff

    ptls_tests/test_preprocessing/test_pyspark/test_event_time.py:16: AssertionError


    def test_datetime_to_timestamp(): t = DatetimeToTimestamp(col_name_original='dt') spark = SparkSession.builder.getOrCreate() df = spark.createDataFrame(data=[ {'dt': '1970-01-01 00:00:00', 'rn': 1}, {'dt': '2012-01-01 12:01:16', 'rn': 2}, {'dt': '2021-12-30 00:00:00', 'rn': 3} ]) df = t.fit_transform(df) et = [rec.event_time for rec in df.select('event_time').collect()]

      assert et[0] == 0
    

    E assert -10800 == 0

    ptls_tests/test_preprocessing/test_pyspark/test_event_time.py:48: AssertionError

    opened by ikretus 0
  • docs. Development guide (for demo notebooks)

    docs. Development guide (for demo notebooks)

    • add current patterns
    • when model training start print message "model training stats, please wait. See tensorboard to track progress", use it with enable_progress=False
    documentation user feedback 
    opened by ivkireev86 0
Releases(v0.5.1)
  • v0.5.1(Dec 28, 2022)

    What's Changed

    • fixed cpc import by @ArtyomVorobev in https://github.com/dllllb/pytorch-lifestream/pull/90
    • add softmaxloss and tests by @ArtyomVorobev in https://github.com/dllllb/pytorch-lifestream/pull/87
    • MLM NSP Module by @mazitovs in https://github.com/dllllb/pytorch-lifestream/pull/88
    • fix test dropout error by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/91

    New Contributors

    • @ArtyomVorobev made their first contribution in https://github.com/dllllb/pytorch-lifestream/pull/90
    • @mazitovs made their first contribution in https://github.com/dllllb/pytorch-lifestream/pull/88

    Full Changelog: https://github.com/dllllb/pytorch-lifestream/compare/v0.5.0...v0.5.1

    Source code(tar.gz)
    Source code(zip)
  • v0.5.0(Nov 9, 2022)

    What's Changed

    • Fix metrics reset by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/72
    • Pandas preprocessing without df copy, faster preprocessing for large datasets by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/73
    • fix in supervised-sequence-to-target.ipynb by @blinovpd in https://github.com/dllllb/pytorch-lifestream/pull/74
    • ptls.nn.PBDropout by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/75
    • tanh for rnn starter by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/76
    • Auc regr metric by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/78
    • spatial dropout for NoisyEmbedding, LastMaxAvgEncoder, warning for bidir RnnEncoder by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/80
    • Hparam tuning demo. hydra, optuna, tensorboard by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/81
    • tabformer by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/83
    • Supervised Coles Module, trx_encoder refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/84

    New Contributors

    • @blinovpd made their first contribution in https://github.com/dllllb/pytorch-lifestream/pull/74

    Full Changelog: https://github.com/dllllb/pytorch-lifestream/compare/v0.4.0...v0.5.0

    Source code(tar.gz)
    Source code(zip)
  • v0.4.0(Jul 27, 2022)

    What's Changed

    • Seq encoder refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/29
    • regr.task ZILNLoss, RMSE, BucketAccuracy by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/36
    • lighting modules and nn layers refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/34
    • Demo colab by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/40
    • Fix drop target arrays by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/42
    • feature naming by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/43
    • Update abs_module.py by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/37
    • Extended inference demo by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/45
    • fix import path by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/46
    • Experiments sync by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/50
    • Experiments sync by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/52
    • Target dist by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/58
    • Data load refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/60
    • doc update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/62
    • doc update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/63

    New Contributors

    • @ikretus made their first contribution in https://github.com/dllllb/pytorch-lifestream/pull/36

    Full Changelog: https://github.com/dllllb/pytorch-lifestream/compare/v0.3.0...v0.4.0

    What's Changed

    • Seq encoder refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/29
    • regr.task ZILNLoss, RMSE, BucketAccuracy by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/36
    • lighting modules and nn layers refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/34
    • Demo colab by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/40
    • Fix drop target arrays by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/42
    • feature naming by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/43
    • Update abs_module.py by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/37
    • Extended inference demo by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/45
    • fix import path by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/46
    • Experiments sync by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/50
    • Experiments sync by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/52
    • Target dist by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/58
    • Data load refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/60
    • doc update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/62
    • doc update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/63

    New Contributors

    • @ikretus made their first contribution in https://github.com/dllllb/pytorch-lifestream/pull/36

    Full Changelog: https://github.com/dllllb/pytorch-lifestream/compare/v0.3.0...v0.4.0

    What's Changed

    • Seq encoder refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/29
    • regr.task ZILNLoss, RMSE, BucketAccuracy by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/36
    • lighting modules and nn layers refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/34
    • Demo colab by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/40
    • Fix drop target arrays by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/42
    • feature naming by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/43
    • Update abs_module.py by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/37
    • Extended inference demo by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/45
    • fix import path by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/46
    • Experiments sync by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/50
    • Experiments sync by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/52
    • Target dist by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/58
    • Data load refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/60
    • doc update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/62
    • doc update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/63

    New Contributors

    • @ikretus made their first contribution in https://github.com/dllllb/pytorch-lifestream/pull/36

    Full Changelog: https://github.com/dllllb/pytorch-lifestream/compare/v0.3.0...v0.4.0

    Source code(tar.gz)
    Source code(zip)
  • v0.3.0(Jun 12, 2022)

    More Pythonic Core API: constructor arguments instead of config objects

    What's Changed

    • cpc params by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/9
    • All modules by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/15
    • Mlm pretrain by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/13
    • all encoders and get rid of get_loss by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/19
    • init by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/20
    • Documentation index by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/8
    • Demos api update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/18
    • loss output correction by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/22
    • Test fixes by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/23
    • readme_demo_link by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/25
    • init by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/26
    • work without logger by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/7
    • trx_encoder refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/28

    Full Changelog: https://github.com/dllllb/pytorch-lifestream/compare/v0.1.2...v0.3.0

    Source code(tar.gz)
    Source code(zip)
Owner
Dmitri Babaev
Dmitri Babaev
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Website | ArXiv | Get Start | Video PIRenderer The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic

Ren Yurui 261 Jan 09, 2023
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
A pytorch reprelication of the model-based reinforcement learning algorithm MBPO

Overview This is a re-implementation of the model-based RL algorithm MBPO in pytorch as described in the following paper: When to Trust Your Model: Mo

Xingyu Lin 93 Jan 05, 2023
A python library for highly configurable transformers - easing model architecture search and experimentation.

A python library for highly configurable transformers - easing model architecture search and experimentation.

Anthony Fuller 51 Nov 20, 2022
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Code for "MetaMorph: Learning Universal Controllers with Transformers", Gupta et al, ICLR 2022

MetaMorph: Learning Universal Controllers with Transformers This is the code for the paper MetaMorph: Learning Universal Controllers with Transformers

Agrim Gupta 50 Jan 03, 2023
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
BridgeGAN - Tensorflow implementation of Bridging the Gap between Label- and Reference-based Synthesis in Multi-attribute Image-to-Image Translation.

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Database Reasoning Over Text project for ACL paper

Database Reasoning over Text This repository contains the code for the Database Reasoning Over Text paper, to appear at ACL2021. Work is performed in

Facebook Research 320 Dec 12, 2022
TyXe: Pyro-based BNNs for Pytorch users

TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi

87 Jan 03, 2023