State of the Art Neural Networks for Generative Deep Learning

Overview

pyradox-generative

State of the Art Neural Networks for Generative Deep Learning

Downloads Downloads Downloads


Table of Contents


Installation

pip install pyradox-generative

Usage

This library provides light weight trainers for the following generative models:

Vanilla GAN

Just provide your genrator and discriminator and train your GAN

Data Preparation:

from pyradox_generative import GAN
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras

(x_train, y_train), _ = keras.datasets.mnist.load_data()
x_train = x_train.astype(np.float32) / 255
x_train = x_train.reshape(-1, 28, 28, 1) * 2.0 - 1.0

dataset = tf.data.Dataset.from_tensor_slices(x_train)
dataset = dataset.shuffle(1024)
dataset = dataset.batch(32, drop_remainder=True).prefetch(1)

Define the generator and discriminator models:

generator = keras.models.Sequential(
    [
        keras.Input(shape=[28]),
        keras.layers.Dense(7 * 7 * 3),
        keras.layers.Reshape([7, 7, 3]),
        keras.layers.BatchNormalization(),
        keras.layers.Conv2DTranspose(
            32, kernel_size=3, strides=2, padding="same", activation="selu"
        ),
        keras.layers.Conv2DTranspose(
            1, kernel_size=3, strides=2, padding="same", activation="tanh"
        ),
    ],
    name="generator",
)

discriminator = keras.models.Sequential(
    [
        keras.layers.Conv2D(
            32,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
            input_shape=[28, 28, 1],
        ),
        keras.layers.Conv2D(
            3,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
        ),
        keras.layers.Flatten(),
        keras.layers.Dense(1, activation="sigmoid"),
    ],
    name="discriminator",
)

Plug in the models to the trainer class and train them using the very familiar compile and fit methods:

gan = GAN(discriminator=discriminator, generator=generator, latent_dim=28)
gan.compile(
    d_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    g_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    loss_fn=keras.losses.BinaryCrossentropy(),
)

history = gan.fit(dataset)

Conditional GAN

Just provide your genrator and discriminator and train your GAN

Data Preparation and calculate the input and output dimensions of generator and discriminator:

from pyradox_generative import ConditionalGAN
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras

CODINGS_SIZE = 28
N_CHANNELS = 1
N_CLASSES = 10
G_INP_CHANNELS = CODINGS_SIZE + N_CLASSES
D_INP_CHANNELS = N_CHANNELS + N_CLASSES

(x_train, y_train), _ = keras.datasets.mnist.load_data()
x_train = x_train
x_train = x_train.astype(np.float32) / 255
x_train = x_train.reshape(-1, 28, 28, 1) * 2.0 - 1.0
y_train = y_train
y_train = keras.utils.to_categorical(y_train, 10)

dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.shuffle(1024)
dataset = dataset.batch(32, drop_remainder=True).prefetch(1)

Define the generator and discriminator models:

generator = keras.models.Sequential(
    [
        keras.Input(shape=[G_INP_CHANNELS]),
        keras.layers.Dense(7 * 7 * 3),
        keras.layers.Reshape([7, 7, 3]),
        keras.layers.BatchNormalization(),
        keras.layers.Conv2DTranspose(
            32, kernel_size=3, strides=2, padding="same", activation="selu"
        ),
        keras.layers.Conv2DTranspose(
            1, kernel_size=3, strides=2, padding="same", activation="tanh"
        ),
    ],
    name="generator",
)

discriminator = keras.models.Sequential(
    [
        keras.layers.Conv2D(
            32,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
            input_shape=[28, 28, D_INP_CHANNELS],
        ),
        keras.layers.Conv2D(
            3,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
        ),
        keras.layers.Flatten(),
        keras.layers.Dense(1, activation="sigmoid"),
    ],
    name="discriminator",
)

Plug in the models to the trainer class and train them using the very familiar compile and fit methods:

gan = ConditionalGAN(
    discriminator=discriminator, generator=generator, latent_dim=CODINGS_SIZE
)
gan.compile(
    d_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    g_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    loss_fn=keras.losses.BinaryCrossentropy(),
)

history = gan.fit(dataset)

Wasserstein GAN

Just provide your genrator and discriminator and train your GAN

Data Preparation:

from pyradox_generative import WGANGP
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras

(x_train, y_train), _ = keras.datasets.mnist.load_data()
x_train = x_train.astype(np.float32) / 255
x_train = x_train.reshape(-1, 28, 28, 1) * 2.0 - 1.0

dataset = tf.data.Dataset.from_tensor_slices(x_train)
dataset = dataset.shuffle(1024)
dataset = dataset.batch(32, drop_remainder=True).prefetch(1)

Define the generator and discriminator models:

generator = keras.models.Sequential(
    [
        keras.Input(shape=[28]),
        keras.layers.Dense(7 * 7 * 3),
        keras.layers.Reshape([7, 7, 3]),
        keras.layers.BatchNormalization(),
        keras.layers.Conv2DTranspose(
            32, kernel_size=3, strides=2, padding="same", activation="selu"
        ),
        keras.layers.Conv2DTranspose(
            1, kernel_size=3, strides=2, padding="same", activation="tanh"
        ),
    ],
    name="generator",
)

discriminator = keras.models.Sequential(
    [
        keras.layers.Conv2D(
            32,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
            input_shape=[28, 28, 1],
        ),
        keras.layers.Conv2D(
            3,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
        ),
        keras.layers.Flatten(),
        keras.layers.Dense(1, activation="sigmoid"),
    ],
    name="discriminator",
)

Plug in the models to the trainer class and train them using the very familiar compile and fit methods:

gan = WGANGP(
    discriminator=discriminator,
    generator=generator,
    latent_dim=28,
    discriminator_extra_steps=1,
    gp_weight=10,
)
gan.compile(
    d_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    g_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
)

history = gan.fit(dataset)

Variational Auto Encoder

Just provide your encoder and decoder and train your VAE Sampling is done internally

Data Preparation:

from pyradox_generative import VAE
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras

(x_train, y_train), _ = keras.datasets.mnist.load_data()
x_train = x_train.astype(np.float32) / 255
x_train = x_train.reshape(-1, 28, 28, 1) * 2.0 - 1.0

dataset = tf.data.Dataset.from_tensor_slices(x_train)
dataset = dataset.shuffle(1024)
dataset = dataset.batch(32, drop_remainder=True).prefetch(1)

Define the encoder and decoder models:

encoder = keras.models.Sequential(
    [
        keras.Input(shape=(28, 28, 1)),
        keras.layers.Conv2D(32, 3, activation="relu", strides=2, padding="same"),
        keras.layers.Conv2D(64, 3, activation="relu", strides=2, padding="same"),
        keras.layers.Flatten(),
        keras.layers.Dense(16, activation="relu"),
    ],
    name="encoder",
)

decoder = keras.models.Sequential(
    [
        keras.Input(shape=(28,)),
        keras.layers.Dense(7 * 7 * 64, activation="relu"),
        keras.layers.Reshape((7, 7, 64)),
        keras.layers.Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same"),
        keras.layers.Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same"),
        keras.layers.Conv2DTranspose(1, 3, activation="sigmoid", padding="same"),
    ],
    name="decoder",
)

Plug in the models to the trainer class and train them using the very familiar compile and fit methods:

vae = VAE(encoder=encoder, decoder=decoder, latent_dim=28)
vae.compile(keras.optimizers.Adam(learning_rate=0.001))
history = vae.fit(dataset)

Style GAN

Just provide your genrator and discriminator models and train your GAN

Data Preparation:

from pyradox_generative import StyleGAN
import numpy as np
import tensorflow as tf
from functools import partial

def resize_image(res, image):
    # only donwsampling, so use nearest neighbor that is faster to run
    image = tf.image.resize(
        image, (res, res), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR
    )
    image = tf.cast(image, tf.float32) / 127.5 - 1.0
    return image


def create_dataloader(res):
    (x_train, y_train), _ = tf.keras.datasets.mnist.load_data()
    x_train = x_train[:100, :, :]
    x_train = np.pad(x_train, [(0, 0), (2, 2), (2, 2)], mode="constant")
    x_train = tf.image.grayscale_to_rgb(tf.expand_dims(x_train, axis=3), name=None)
    x_train = tf.data.Dataset.from_tensor_slices(x_train)

    batch_size = 32
    dl = x_train.map(partial(resize_image, res), num_parallel_calls=tf.data.AUTOTUNE)
    dl = dl.shuffle(200).batch(batch_size, drop_remainder=True).prefetch(1).repeat()
    return dl

Define the model by providing number of filters for each each resolution (log 2):

gan = StyleGAN(
    target_res=32,
    start_res=4,
    filter_nums={0: 32, 1: 32, 2: 32, 3: 32, 4: 32, 5: 32},
)
opt_cfg = {"learning_rate": 1e-3, "beta_1": 0.0, "beta_2": 0.99, "epsilon": 1e-8}

start_res_log2 = 2
target_res_log2 = 5

Train the Style GAN:

for res_log2 in range(start_res_log2, target_res_log2 + 1):
    res = 2 ** res_log2
    for phase in ["TRANSITION", "STABLE"]:
        if res == 4 and phase == "TRANSITION":
            continue

        train_dl = create_dataloader(res)

        steps = 10

        gan.compile(
            d_optimizer=tf.keras.optimizers.Adam(**opt_cfg),
            g_optimizer=tf.keras.optimizers.Adam(**opt_cfg),
            loss_weights={"gradient_penalty": 10, "drift": 0.001},
            steps_per_epoch=steps,
            res=res,
            phase=phase,
            run_eagerly=False,
        )

        print(phase)
        history = gan.fit(train_dl, epochs=1, steps_per_epoch=steps)

Cycle GAN

Just provide your genrator and discriminator models and train your GAN

Data Preparation:

import tensorflow_datasets as tfds
import tensorflow as tf
from tensorflow import keras
from pyradox_generative import CycleGAN

tfds.disable_progress_bar()
autotune = tf.data.AUTOTUNE
orig_img_size = (286, 286)
input_img_size = (256, 256, 3)


def normalize_img(img):
    img = tf.cast(img, dtype=tf.float32)
    return (img / 127.5) - 1.0


def preprocess_train_image(img, label):
    img = tf.image.random_flip_left_right(img)
    img = tf.image.resize(img, [*orig_img_size])
    img = tf.image.random_crop(img, size=[*input_img_size])
    img = normalize_img(img)
    return img


def preprocess_test_image(img, label):
    img = tf.image.resize(img, [input_img_size[0], input_img_size[1]])
    img = normalize_img(img)
    return img

train_horses, _ = tfds.load(
    "cycle_gan/horse2zebra", with_info=True, as_supervised=True, split="trainA[:5%]"
)
train_zebras, _ = tfds.load(
    "cycle_gan/horse2zebra", with_info=True, as_supervised=True, split="trainB[:5%]"
)

buffer_size = 256
batch_size = 1

train_horses = (
    train_horses.map(preprocess_train_image, num_parallel_calls=autotune)
    .cache()
    .shuffle(buffer_size)
    .batch(batch_size)
)
train_zebras = (
    train_zebras.map(preprocess_train_image, num_parallel_calls=autotune)
    .cache()
    .shuffle(buffer_size)
    .batch(batch_size)
)

Define the generator and discriminator models:

def build_generator(name):
    return keras.models.Sequential(
        [
            keras.layers.Input(shape=input_img_size),
            keras.layers.Conv2D(32, 3, activation="relu", padding="same"),
            keras.layers.Conv2D(32, 3, activation="relu", padding="same"),
            keras.layers.Conv2D(3, 3, activation="tanh", padding="same"),
        ],
        name=name,
    )


def build_discriminator(name):
    return keras.models.Sequential(
        [
            keras.layers.Input(shape=input_img_size),
            keras.layers.Conv2D(32, 3, activation="relu", padding="same"),
            keras.layers.MaxPooling2D(pool_size=2, strides=2),
            keras.layers.Conv2D(32, 3, activation="relu", padding="same"),
            keras.layers.MaxPooling2D(pool_size=2, strides=2),
            keras.layers.Conv2D(32, 3, activation="relu", padding="same"),
            keras.layers.MaxPooling2D(pool_size=2, strides=2),
            keras.layers.Conv2D(1, 3, activation="relu", padding="same"),
        ],
        name=name,
    )

Plug in the models to the trainer class and train them using the very familiar compile and fit methods:

gan = CycleGAN(
    generator_g=build_generator("gen_G"),
    generator_f=build_generator("gen_F"),
    discriminator_x=build_discriminator("disc_X"),
    discriminator_y=build_discriminator("disc_Y"),
)

gan.compile(
    gen_g_optimizer=keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5),
    gen_f_optimizer=keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5),
    disc_x_optimizer=keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5),
    disc_y_optimizer=keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5),
)

history = gan.fit(
    tf.data.Dataset.zip((train_horses, train_zebras)),
)

References

Owner
Ritvik Rastogi
I have been writing code since 2016, and taught myself a handful of skills and programming languages. I love solving problems by writing code
Ritvik Rastogi
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
An implementation of the 1. Parallel, 2. Streaming, 3. Randomized SVD using MPI4Py

PYPARSVD This implementation allows for a singular value decomposition which is: Distributed using MPI4Py Streaming - data can be shown in batches to

Romit Maulik 44 Dec 31, 2022
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
MGFN: Multi-Graph Fusion Networks for Urban Region Embedding was accepted by IJCAI-2022.

Multi-Graph Fusion Networks for Urban Region Embedding (IJCAI-22) This is the implementation of Multi-Graph Fusion Networks for Urban Region Embedding

202 Nov 18, 2022
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Sakib Mahmud 1 Nov 15, 2021
An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicity.

Fast Face Classification (F²C) This is the code of our paper An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicit

33 Jun 27, 2021
ObjectDetNet is an easy, flexible, open-source object detection framework

Getting started with the ObjectDetNet ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resu

5 Aug 25, 2020
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022

torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

631 Jan 04, 2023
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 03, 2023
Code for MSc Quantitative Finance Dissertation

MSc Dissertation Code ReadMe Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks Curtis Nybo MSc Quantitative F

2 Dec 01, 2022
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 322 Dec 31, 2022
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022