Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

Related tags

Deep Learning3detr
Overview

3DETR: An End-to-End Transformer Model for 3D Object Detection

PyTorch implementation and models for 3DETR.

3DETR (3D DEtection TRansformer) is a simpler alternative to complex hand-crafted 3D detection pipelines. It does not rely on 3D backbones such as PointNet++ and uses few 3D-specific operators. 3DETR obtains comparable or better performance than 3D detection methods such as VoteNet. The encoder can also be used for other 3D tasks such as shape classification. More details in the paper "An End-to-End Transformer Model for 3D Object Detection".

[website] [arXiv] [bibtex]

Code description. Our code is based on prior work such as DETR and VoteNet and we aim for simplicity in our implementation. We hope it can ease research in 3D detection.

3DETR Approach Decoder Detections

Pretrained Models

We provide the pretrained model weights and the corresponding metrics on the val set (per class APs, Recalls). We provide a Python script utils/download_weights.py to easily download the weights/metrics files.

Arch Dataset Epochs AP25 AP50 Model weights Eval metrics
3DETR-m SUN RGB-D 1080 59.1 30.3 weights metrics
3DETR SUN RGB-D 1080 58.0 30.3 weights metrics
3DETR-m ScanNet 1080 65.0 47.0 weights metrics
3DETR ScanNet 1080 62.1 37.9 weights metrics

Model Zoo

For convenience, we provide model weights for 3DETR trained for different number of epochs.

Arch Dataset Epochs AP25 AP50 Model weights Eval metrics
3DETR-m SUN RGB-D 90 51.0 22.0 weights metrics
3DETR-m SUN RGB-D 180 55.6 27.5 weights metrics
3DETR-m SUN RGB-D 360 58.2 30.6 weights metrics
3DETR-m SUN RGB-D 720 58.1 30.4 weights metrics
3DETR SUN RGB-D 90 43.7 16.2 weights metrics
3DETR SUN RGB-D 180 52.1 25.8 weights metrics
3DETR SUN RGB-D 360 56.3 29.6 weights metrics
3DETR SUN RGB-D 720 56.0 27.8 weights metrics
3DETR-m ScanNet 90 47.1 19.5 weights metrics
3DETR-m ScanNet 180 58.7 33.6 weights metrics
3DETR-m ScanNet 360 62.4 37.7 weights metrics
3DETR-m ScanNet 720 63.7 44.5 weights metrics
3DETR ScanNet 90 42.8 15.3 weights metrics
3DETR ScanNet 180 54.5 28.8 weights metrics
3DETR ScanNet 360 59.0 35.4 weights metrics
3DETR ScanNet 720 61.1 40.2 weights metrics

Running 3DETR

Installation

Our code is tested with PyTorch 1.4.0, CUDA 10.2 and Python 3.6. It may work with other versions.

You will need to install pointnet2 layers by running

cd third_party/pointnet2 && python setup.py install

You will also need Python dependencies (either conda install or pip install)

matplotlib
opencv-python
plyfile
'trimesh>=2.35.39,<2.35.40'
'networkx>=2.2,<2.3'
scipy

Some users have experienced issues using CUDA 11 or higher. Please try using CUDA 10.2 if you run into CUDA issues.

Optionally, you can install a Cythonized implementation of gIOU for faster training.

conda install cython
cd utils && python cython_compile.py build_ext --inplace

Benchmarking

Dataset preparation

We follow the VoteNet codebase for preprocessing our data. The instructions for preprocessing SUN RGB-D are [here] and ScanNet are [here].

You can edit the dataset paths in datasets/sunrgbd.py and datasets/scannet.py or choose to specify at runtime.

Testing

Once you have the datasets prepared, you can test pretrained models as

python main.py --dataset_name <dataset_name> --nqueries <number of queries> --test_ckpt <path_to_checkpoint> --test_only [--enc_type masked]

We use 128 queries for the SUN RGB-D dataset and 256 queries for the ScanNet dataset. You will need to add the flag --enc_type masked when testing the 3DETR-m checkpoints. Please note that the testing process is stochastic (due to randomness in point cloud sampling and sampling the queries) and so results can vary within 1% AP25 across runs. This stochastic nature of the inference process is also common for methods such as VoteNet.

If you have not edited the dataset paths for the files in the datasets folder, you can pass the path to the datasets using the --dataset_root_dir flag.

Training

The model can be simply trained by running main.py.

python main.py --dataset_name <dataset_name> --checkpoint_dir <path to store outputs>

To reproduce the results in the paper, we provide the arguments in the scripts folder. A variance of 1% AP25 across different training runs can be expected.

You can quickly verify your installation by training a 3DETR model for 90 epochs on ScanNet following the file scripts/scannet_quick.sh and compare it to the pretrained checkpoint from the Model Zoo.

License

The majority of 3DETR is licensed under the Apache 2.0 license as found in the LICENSE file, however portions of the project are available under separate license terms: licensing information for pointnet2 is available at https://github.com/erikwijmans/Pointnet2_PyTorch/blob/master/UNLICENSE

Contributing

We welcome your pull requests! Please see CONTRIBUTING and CODE_OF_CONDUCT for more info.

Citation

If you find this repository useful, please consider starring us and citing

@inproceedings{misra2021-3detr,
    title={{An End-to-End Transformer Model for 3D Object Detection}},
    author={Misra, Ishan and Girdhar, Rohit and Joulin, Armand},
    booktitle={{ICCV}},
    year={2021},
}
Owner
Facebook Research
Facebook Research
abess: Fast Best-Subset Selection in Python and R

abess: Fast Best-Subset Selection in Python and R Overview abess (Adaptive BEst Subset Selection) library aims to solve general best subset selection,

297 Dec 21, 2022
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Official implementation of Pixel-Level Bijective Matching for Video Object Segmentation

BMVOS This is the official implementation of Pixel-Level Bijective Matching for Video Object Segmentation, to appear in WACV 2022. @article{cho2021pix

Suhwan Cho 13 Dec 14, 2022
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023
[cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

PS-MT [cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasile

Yuyuan Liu 132 Jan 03, 2023
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
This repository is for Competition for ML_data class

This repository is for Competition for ML_data class. Based on mmsegmentatoin,mainly using swin transformer to completed the competition.

jianlong 2 Oct 23, 2022
Meta Learning Backpropagation And Improving It (VSML)

Meta Learning Backpropagation And Improving It (VSML) This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021. Many concepts

Louis Kirsch 22 Dec 21, 2022
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
render sprites into your desktop environment as shaped windows using GTK

spritegtk render static or animated sprites into your desktop environment as dynamic shaped windows using GTK requires pycairo and PYGobject: pip inst

hermit 20 Oct 27, 2022
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

Double-zh 45 Dec 19, 2022
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (ऋषिकेश) 175 Dec 23, 2022
Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language

Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language This repository contains the code, model, and deployment config

16 Oct 23, 2022
This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting

1 MAGNN This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 12 Nov 08, 2022
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022