Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

Related tags

Deep Learning3detr
Overview

3DETR: An End-to-End Transformer Model for 3D Object Detection

PyTorch implementation and models for 3DETR.

3DETR (3D DEtection TRansformer) is a simpler alternative to complex hand-crafted 3D detection pipelines. It does not rely on 3D backbones such as PointNet++ and uses few 3D-specific operators. 3DETR obtains comparable or better performance than 3D detection methods such as VoteNet. The encoder can also be used for other 3D tasks such as shape classification. More details in the paper "An End-to-End Transformer Model for 3D Object Detection".

[website] [arXiv] [bibtex]

Code description. Our code is based on prior work such as DETR and VoteNet and we aim for simplicity in our implementation. We hope it can ease research in 3D detection.

3DETR Approach Decoder Detections

Pretrained Models

We provide the pretrained model weights and the corresponding metrics on the val set (per class APs, Recalls). We provide a Python script utils/download_weights.py to easily download the weights/metrics files.

Arch Dataset Epochs AP25 AP50 Model weights Eval metrics
3DETR-m SUN RGB-D 1080 59.1 30.3 weights metrics
3DETR SUN RGB-D 1080 58.0 30.3 weights metrics
3DETR-m ScanNet 1080 65.0 47.0 weights metrics
3DETR ScanNet 1080 62.1 37.9 weights metrics

Model Zoo

For convenience, we provide model weights for 3DETR trained for different number of epochs.

Arch Dataset Epochs AP25 AP50 Model weights Eval metrics
3DETR-m SUN RGB-D 90 51.0 22.0 weights metrics
3DETR-m SUN RGB-D 180 55.6 27.5 weights metrics
3DETR-m SUN RGB-D 360 58.2 30.6 weights metrics
3DETR-m SUN RGB-D 720 58.1 30.4 weights metrics
3DETR SUN RGB-D 90 43.7 16.2 weights metrics
3DETR SUN RGB-D 180 52.1 25.8 weights metrics
3DETR SUN RGB-D 360 56.3 29.6 weights metrics
3DETR SUN RGB-D 720 56.0 27.8 weights metrics
3DETR-m ScanNet 90 47.1 19.5 weights metrics
3DETR-m ScanNet 180 58.7 33.6 weights metrics
3DETR-m ScanNet 360 62.4 37.7 weights metrics
3DETR-m ScanNet 720 63.7 44.5 weights metrics
3DETR ScanNet 90 42.8 15.3 weights metrics
3DETR ScanNet 180 54.5 28.8 weights metrics
3DETR ScanNet 360 59.0 35.4 weights metrics
3DETR ScanNet 720 61.1 40.2 weights metrics

Running 3DETR

Installation

Our code is tested with PyTorch 1.4.0, CUDA 10.2 and Python 3.6. It may work with other versions.

You will need to install pointnet2 layers by running

cd third_party/pointnet2 && python setup.py install

You will also need Python dependencies (either conda install or pip install)

matplotlib
opencv-python
plyfile
'trimesh>=2.35.39,<2.35.40'
'networkx>=2.2,<2.3'
scipy

Some users have experienced issues using CUDA 11 or higher. Please try using CUDA 10.2 if you run into CUDA issues.

Optionally, you can install a Cythonized implementation of gIOU for faster training.

conda install cython
cd utils && python cython_compile.py build_ext --inplace

Benchmarking

Dataset preparation

We follow the VoteNet codebase for preprocessing our data. The instructions for preprocessing SUN RGB-D are [here] and ScanNet are [here].

You can edit the dataset paths in datasets/sunrgbd.py and datasets/scannet.py or choose to specify at runtime.

Testing

Once you have the datasets prepared, you can test pretrained models as

python main.py --dataset_name <dataset_name> --nqueries <number of queries> --test_ckpt <path_to_checkpoint> --test_only [--enc_type masked]

We use 128 queries for the SUN RGB-D dataset and 256 queries for the ScanNet dataset. You will need to add the flag --enc_type masked when testing the 3DETR-m checkpoints. Please note that the testing process is stochastic (due to randomness in point cloud sampling and sampling the queries) and so results can vary within 1% AP25 across runs. This stochastic nature of the inference process is also common for methods such as VoteNet.

If you have not edited the dataset paths for the files in the datasets folder, you can pass the path to the datasets using the --dataset_root_dir flag.

Training

The model can be simply trained by running main.py.

python main.py --dataset_name <dataset_name> --checkpoint_dir <path to store outputs>

To reproduce the results in the paper, we provide the arguments in the scripts folder. A variance of 1% AP25 across different training runs can be expected.

You can quickly verify your installation by training a 3DETR model for 90 epochs on ScanNet following the file scripts/scannet_quick.sh and compare it to the pretrained checkpoint from the Model Zoo.

License

The majority of 3DETR is licensed under the Apache 2.0 license as found in the LICENSE file, however portions of the project are available under separate license terms: licensing information for pointnet2 is available at https://github.com/erikwijmans/Pointnet2_PyTorch/blob/master/UNLICENSE

Contributing

We welcome your pull requests! Please see CONTRIBUTING and CODE_OF_CONDUCT for more info.

Citation

If you find this repository useful, please consider starring us and citing

@inproceedings{misra2021-3detr,
    title={{An End-to-End Transformer Model for 3D Object Detection}},
    author={Misra, Ishan and Girdhar, Rohit and Joulin, Armand},
    booktitle={{ICCV}},
    year={2021},
}
Owner
Facebook Research
Facebook Research
Code basis for the paper "Camera Condition Monitoring and Readjustment by means of Noise and Blur" (2021)

Camera Condition Monitoring and Readjustment by means of Noise and Blur This repository contains the source code of the paper: Wischow, M., Gallego, G

7 Dec 22, 2022
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

BlobGAN: Spatially Disentangled Scene Representations Official PyTorch Implementation Paper | Project Page | Video | Interactive Demo BlobGAN.mp4 This

148 Dec 29, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019
Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning

Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning Kajetan Schweighofer1, Markus Hofmarcher1, Marius-Constantin D

Institute for Machine Learning, Johannes Kepler University Linz 17 Dec 28, 2022
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems Introduction Multi-agent control i

VITA 6 May 05, 2022
On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization This repository contains the evaluation code and alternative pseudo ground truth

Torsten Sattler 36 Dec 22, 2022
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La

Kotaro Kikuchi 73 Dec 27, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022