Code for database and frontend of webpage for Neural Fields in Visual Computing and Beyond.

Overview

Neural Fields in Visual Computing—Complementary Webpage

This is based on the amazing MiniConf project from Hendrik Strobelt and Sasha Rush—thank you!

Citation

If you find our project helpful, please cite our review paper:

@article{xie2021neuralfield,
    title = {Neural Fields in Visual Computing and Beyond},
    author = {Yiheng Xie and Towaki Takikawa and Shunsuke Saito and Or Litany and Shiqin Yan and Numair Khan
    and Federico Tombari and James Tompkin and Vincent Sitzmann and Srinath Sridhar},
    booktitle = {ArXiv Pre-print},
    year = {2021} 
}

Adding a paper—How To

See our website instructions

Website Team—Get Started on Development

> pip install -r requirements.txt
> make run

When you are ready to deploy run make freeze to get a static version of the site in the build folder.

Deploying to Github

  • Define two command-line variables GH_TOKEN and GH_REF. GH_TOKEN is your Github personal access token, and will look like username:token. GH_REF is the location of this repo, e.g., $> export GH_REF=github.com/brownvc/neural-fields-review.
  • DO NOT add GH_TOKEN to the Makefile—this is your personal access token and should be kept private. Hence, declare a temporary command line variable using export.
  • Commit any changes. Any uncommited changes will be OVERWRITTEN!
  • Execute make deploy.
  • That's it. The page is now live here.

Tour

The repo contains:

  1. Datastore sitedata/

Collection of CSV files representing the papers, speakers, workshops, and other important information for the conference.

  1. Routing main.py

One file flask-server handles simple data preprocessing and site navigation.

  1. Templates templates/

Contains all the pages for the site. See base.html for the master page and components.html for core components.

  1. Frontend static/

Contains frontend components like the default css, images, and javascript libs.

  1. Scripts scripts/

Contains additional preprocessing to add visualizations, recommendations, schedules to the conference.

  1. For importing calendars as schedule see scripts/README_Schedule.md

Extensions

MiniConf is designed to be a completely static solution. However it is designed to integrate well with dynamic third-party solutions. We directly support the following providers:

  • Rocket.Chat: The chat/ directory contains descriptions for setting up a hosted Rocket.Chat instance and for embedding chat rooms on individual paper pages. You can either buy a hosted setting from Rocket.chat or we include instructions for running your own scalable instance through sloppy.io.

  • Auth0 : The code can integrate through Auth0.com to provide both page login (through javascript gating) and OAuth SSO with Rocket Chat. The documentation on Auth0 is very easy to follow, you simply need to create an Application for both the MiniConf site and the Rocket.Chat server. You then enter in the Client keys to the appropriate configs.

  • SlidesLive: It is easy to embedded any video provider -> YouTube, Vimeo, etc. However we have had great experience with SlidesLive and recommend them as a host. We include a slideslive example on the main page.

  • PDF.js: For conferences that use posters it is easy to include an embedded pdf on poster pages. An example is given.

Owner
Brown University Visual Computing Group
Brown University Visual Computing Group
LSSY量化交易系统

LSSY量化交易系统 该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开

55 Oct 04, 2022
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.

Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training m

Activeloop 5.1k Jan 08, 2023
SemiNAS: Semi-Supervised Neural Architecture Search

SemiNAS: Semi-Supervised Neural Architecture Search This repository contains the code used for Semi-Supervised Neural Architecture Search, by Renqian

Renqian Luo 21 Aug 31, 2022
Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

BiDR Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval. Requirements torch==

Microsoft 11 Oct 20, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022
COIN the currently largest dataset for comprehensive instruction video analysis.

COIN Dataset COIN is the currently largest dataset for comprehensive instruction video analysis. It contains 11,827 videos of 180 different tasks (i.e

86 Dec 28, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022
Generate vibrant and detailed images using only text.

CLIP Guided Diffusion From RiversHaveWings. Generate vibrant and detailed images using only text. See captions and more generations in the Gallery See

Clay M. 401 Dec 28, 2022
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
PRIME: A Few Primitives Can Boost Robustness to Common Corruptions

PRIME: A Few Primitives Can Boost Robustness to Common Corruptions This is the official repository of PRIME, the data agumentation method introduced i

Apostolos Modas 34 Oct 30, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023