Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Overview

Deep Hedging Demo

Pricing Derivatives using Machine Learning

Image of Demo

1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab.

2) Gui version: Run python ./pyqt5/main.py Check ./requirements.txt for main dependencies.

The Black-Scholes (BS) model – developed in 1973 and based on Nobel Prize winning works – has been the de-facto standard for pricing options and other financial derivatives for nearly half a century. The model can be used, under the assumption of a perfect financial market, to calculate an options price and the associated risk sensitivities. These risk sensitivities can then be theoretically used by a trader to create a perfect hedging strategy that eliminates all risks in a portfolio of options. However, the necessary conditions for a perfect financial market, such as zero transaction cost and the possibility of continuous trading, are difficult to meet in the real world. Therefore, in practice, banks have to rely on their traders’ intuition and experience to augment the BS model hedges with manual adjustments to account for these market imperfections. The derivative desks of every bank all hedge their positions, and their PnL and risk exposure depend crucially on the quality of their hedges. If their hedges does not properly account for market imperfections, banks might underestimate the true risk exposure of their portfolios. On the other hand, if their hedges overestimate the cost of market imperfections, banks might overprice their positions (relative to their competitors) and hence risk losing trades and/or customers. Over the last few decades, the financial market has become increasingly sophisticated. Intuition and experience of traders might not be sufficiently fast and accurate to compute the impact of market imperfections on their portfolios and to come up with good manual adjustments to their BS model hedges.

These limitations of the BS model are well-known, but neither academics nor practitioners have managed to develop alternatives to properly and systematically account for market frictions – at least not successful enough to be widely adopted by banks. Could machine learning (ML) be the cure? Last year, the Risk magazine reported that JP Morgan has begun to use machine learning to hedge (a.k.a. Deep Hedging) a portion of its vanilla index options flow book and plan to roll out the similar technology for single stocks, baskets and light exotics. According to Risk.net (2019), the technology can create hedging strategies that “automatically factor in market fictions, such as transaction costs, liquidity constraints and risk limits”. More amazingly, the ML algorithm “far outperformed” hedging strategies derived from the BS model, and it could reduce the cost of hedging (in certain asset class) by “as much as 80%”. The technology has been heralded by some as “a breakthrough in quantitative finance, one that could mark the end of the Black-Scholes era.” Hence, it is not surprising that firms, such as Bank of America, Societe Generale and IBM, are reportedly developing their own ML-based system for derivative hedging.

Machine learning algorithms are often referred to as “black boxes” because of the inherent opaqueness and difficulties to inspect how an algorithm is able to accomplishing what is accomplishing. Buhler et al (2019) recently published a paper outlining the mechanism of this ground-breaking technology. We follow their outlined methodology to implement and replicate the “deep hedging” algorithm under different simulated market conditions. Given a distribution of the underlying assets and trader preference, the “deep hedging” algorithm attempts to identify the optimal hedge strategy (as a function of over 10k model parameters) that minimizes the residual risk of a hedged portfolio. We implement the “deep hedging” algorithm to demonstrate its potential benefit in a simplified yet sufficiently realistic setting. We first benchmark the deep hedging strategy against the classic Black-Scholes hedging strategy in a perfect world with no transaction cost, in which case the performance of both strategies should be similar. Then, we benchmark again in a world with market friction (i.e. non-zero transaction costs), in which case the deep hedging strategy should outperform the classic Black-Scholes hedging strategy.

References:

Risk.net, (2019). “Deep hedging and the end of the Black-Scholes era.”

Hans Buhler et al, (2019). “Deep Hedging.” Quantitative Finance, 19(8).

Owner
Yu Man Tam
Yu Man Tam
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the ou

The AI Guy 1.1k Dec 29, 2022
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
TAPEX: Table Pre-training via Learning a Neural SQL Executor

TAPEX: Table Pre-training via Learning a Neural SQL Executor The official repository which contains the code and pre-trained models for our paper TAPE

Microsoft 157 Dec 28, 2022
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022
Lab Materials for MIT 6.S191: Introduction to Deep Learning

This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available

Alexander Amini 5.6k Dec 26, 2022
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Torch-RGCN Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in Modeling Relational Data with Graph Conv

Thiviyan Singam 66 Nov 30, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022