Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Overview

Deep Hedging Demo

Pricing Derivatives using Machine Learning

Image of Demo

1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab.

2) Gui version: Run python ./pyqt5/main.py Check ./requirements.txt for main dependencies.

The Black-Scholes (BS) model – developed in 1973 and based on Nobel Prize winning works – has been the de-facto standard for pricing options and other financial derivatives for nearly half a century. The model can be used, under the assumption of a perfect financial market, to calculate an options price and the associated risk sensitivities. These risk sensitivities can then be theoretically used by a trader to create a perfect hedging strategy that eliminates all risks in a portfolio of options. However, the necessary conditions for a perfect financial market, such as zero transaction cost and the possibility of continuous trading, are difficult to meet in the real world. Therefore, in practice, banks have to rely on their traders’ intuition and experience to augment the BS model hedges with manual adjustments to account for these market imperfections. The derivative desks of every bank all hedge their positions, and their PnL and risk exposure depend crucially on the quality of their hedges. If their hedges does not properly account for market imperfections, banks might underestimate the true risk exposure of their portfolios. On the other hand, if their hedges overestimate the cost of market imperfections, banks might overprice their positions (relative to their competitors) and hence risk losing trades and/or customers. Over the last few decades, the financial market has become increasingly sophisticated. Intuition and experience of traders might not be sufficiently fast and accurate to compute the impact of market imperfections on their portfolios and to come up with good manual adjustments to their BS model hedges.

These limitations of the BS model are well-known, but neither academics nor practitioners have managed to develop alternatives to properly and systematically account for market frictions – at least not successful enough to be widely adopted by banks. Could machine learning (ML) be the cure? Last year, the Risk magazine reported that JP Morgan has begun to use machine learning to hedge (a.k.a. Deep Hedging) a portion of its vanilla index options flow book and plan to roll out the similar technology for single stocks, baskets and light exotics. According to Risk.net (2019), the technology can create hedging strategies that “automatically factor in market fictions, such as transaction costs, liquidity constraints and risk limits”. More amazingly, the ML algorithm “far outperformed” hedging strategies derived from the BS model, and it could reduce the cost of hedging (in certain asset class) by “as much as 80%”. The technology has been heralded by some as “a breakthrough in quantitative finance, one that could mark the end of the Black-Scholes era.” Hence, it is not surprising that firms, such as Bank of America, Societe Generale and IBM, are reportedly developing their own ML-based system for derivative hedging.

Machine learning algorithms are often referred to as “black boxes” because of the inherent opaqueness and difficulties to inspect how an algorithm is able to accomplishing what is accomplishing. Buhler et al (2019) recently published a paper outlining the mechanism of this ground-breaking technology. We follow their outlined methodology to implement and replicate the “deep hedging” algorithm under different simulated market conditions. Given a distribution of the underlying assets and trader preference, the “deep hedging” algorithm attempts to identify the optimal hedge strategy (as a function of over 10k model parameters) that minimizes the residual risk of a hedged portfolio. We implement the “deep hedging” algorithm to demonstrate its potential benefit in a simplified yet sufficiently realistic setting. We first benchmark the deep hedging strategy against the classic Black-Scholes hedging strategy in a perfect world with no transaction cost, in which case the performance of both strategies should be similar. Then, we benchmark again in a world with market friction (i.e. non-zero transaction costs), in which case the deep hedging strategy should outperform the classic Black-Scholes hedging strategy.

References:

Risk.net, (2019). “Deep hedging and the end of the Black-Scholes era.”

Hans Buhler et al, (2019). “Deep Hedging.” Quantitative Finance, 19(8).

Owner
Yu Man Tam
Yu Man Tam
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
Secure Distributed Training at Scale

Secure Distributed Training at Scale This repository contains the implementation of experiments from the paper "Secure Distributed Training at Scale"

Yandex Research 9 Jul 11, 2022
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Sundararaman 76 Dec 06, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Google 1.2k Dec 29, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
The Fundamental Clustering Problems Suite (FCPS) summaries 54 state-of-the-art clustering algorithms, common cluster challenges and estimations of the number of clusters as well as the testing for cluster tendency.

FCPS Fundamental Clustering Problems Suite The package provides over sixty state-of-the-art clustering algorithms for unsupervised machine learning pu

9 Nov 27, 2022
Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).

Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018) By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and J

Zilong Huang 245 Dec 13, 2022
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022
Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning

CSRL Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning Python: 3

4 Apr 14, 2022
Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
A 10000+ hours dataset for Chinese speech recognition

WenetSpeech Official website | Paper A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition Download Please visit the official website, rea

310 Jan 03, 2023