Official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

Overview

Test-Agnostic Long-Tailed Recognition

This repository is the official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

  • TADE (our method) innovates the expert training scheme by introducing diversity-promoting expertise-guided losses, which train different experts to handle distinct class distributions. In this way, the learned experts would be more diverse than existing multi-expert methods, leading to better ensemble performance, and aggregatedly simulate a wide spectrum of possible class distributions.
  • TADE develops a new self-supervised method, namely prediction stability maximization, to adaptively aggregate these experts for better handling unknown test distribution, using unlabeled test class data.

Results

ImageNet-LT (ResNeXt-50)

Long-tailed recognition with uniform test class distribution:

Methods MACs(G) Top-1 acc. Model
Softmax 4.26 48.0
RIDE 6.08 56.3
TADE (ours) 6.08 58.8 Download

Test-agnostic long-tailed recognition:

Methods MACs(G) Forward-50 Forward-10 Uniform Backward-10 Backward-50
Softmax 4.26 66.1 60.3 48.0 34.9 27.6
RIDE 6.08 67.6 64.0 56.3 48.7 44.0
TADE (ours) 6.08 69.4 65.4 58.8 54.5 53.1

CIFAR100-Imbalance ratio 100 (ResNet-32)

Long-tailed recognition with uniform test class distribution:

Methods MACs(G) Top-1 acc.
Softmax 0.07 41.4
RIDE 0.11 48.0
TADE (ours) 0.11 49.8

Test-agnostic long-tailed recognition:

Methods MACs(G) Forward-50 Forward-10 Uniform Backward-10 Backward-50
Softmax 0.07 62.3 56.2 41.4 25.8 17.5
RIDE 0.11 63.0 57.0 48.0 35.4 29.3
TADE (ours) 0.11 65.9 58.3 49.8 43.9 42.4

Places-LT (ResNet-152)

Long-tailed recognition with uniform test class distribution:

Methods MACs(G) Top-1 acc.
Softmax 11.56 31.4
RIDE 13.18 40.3
TADE (ours) 13.18 40.9

Test-agnostic long-tailed recognition:

Methods MACs(G) Forward-50 Forward-10 Uniform Backward-10 Backward-50
Softmax 11.56 45.6 40.2 31.4 23.4 19.4
RIDE 13.18 43.1 41.6 40.3 38.2 36.9
TADE (ours) 13.18 46.4 43.3 40.9 41.4 41.6

iNaturalist 2018 (ResNet-50)

Long-tailed recognition with uniform test class distribution:

Methods MACs(G) Top-1 acc.
Softmax 4.14 64.7
RIDE 5.80 71.8
TADE (ours) 5.80 72.9

Test-agnostic long-tailed recognition:

Methods MACs(G) Forward-3 Forward-2 Uniform Backward-2 Backward-3
Softmax 4.14 65.4 65.5 64.7 64.0 63.4
RIDE 5.80 71.5 71.9 71.8 71.9 71.8
TADE (ours) 5.80 72.3 72.5 72.9 73.5 73.3

Requirements

  • To install requirements:
pip install -r requirements.txt

Hardware requirements

8 GPUs with >= 11G GPU RAM are recommended. Otherwise the model with more experts may not fit in, especially on datasets with more classes (the FC layers will be large). We do not support CPU training, but CPU inference could be supported by slight modification.

Datasets

Four bechmark datasets

  • Please download these datasets and put them to the /data file.
  • ImageNet-LT and Places-LT can be found at here.
  • iNaturalist data should be the 2018 version from here.
  • CIFAR-100 will be downloaded automatically with the dataloader.
data
├── ImageNet_LT
│   ├── test
│   ├── train
│   └── val
├── CIFAR100
│   └── cifar-100-python
├── Place365
│   ├── data_256
│   ├── test_256
│   └── val_256
└── iNaturalist 
    ├── test2018
    └── train_val2018

Txt files

  • We provide txt files for test-agnostic long-tailed recognition for ImageNet-LT, Places-LT and iNaturalist 2018. CIFAR-100 will be generated automatically with the code.
  • For iNaturalist 2018, please unzip the iNaturalist_train.zip.
data_txt
├── ImageNet_LT
│   ├── ImageNet_LT_backward2.txt
│   ├── ImageNet_LT_backward5.txt
│   ├── ImageNet_LT_backward10.txt
│   ├── ImageNet_LT_backward25.txt
│   ├── ImageNet_LT_backward50.txt
│   ├── ImageNet_LT_forward2.txt
│   ├── ImageNet_LT_forward5.txt
│   ├── ImageNet_LT_forward10.txt
│   ├── ImageNet_LT_forward25.txt
│   ├── ImageNet_LT_forward50.txt
│   ├── ImageNet_LT_test.txt
│   ├── ImageNet_LT_train.txt
│   ├── ImageNet_LT_uniform.txt
│   └── ImageNet_LT_val.txt
├── Places_LT_v2
│   ├── Places_LT_backward2.txt
│   ├── Places_LT_backward5.txt
│   ├── Places_LT_backward10.txt
│   ├── Places_LT_backward25.txt
│   ├── Places_LT_backward50.txt
│   ├── Places_LT_forward2.txt
│   ├── Places_LT_forward5.txt
│   ├── Places_LT_forward10.txt
│   ├── Places_LT_forward25.txt
│   ├── Places_LT_forward50.txt
│   ├── Places_LT_test.txt
│   ├── Places_LT_train.txt
│   ├── Places_LT_uniform.txt
│   └── Places_LT_val.txt
└── iNaturalist18
    ├── iNaturalist18_backward2.txt
    ├── iNaturalist18_backward3.txt
    ├── iNaturalist18_forward2.txt
    ├── iNaturalist18_forward3.txt
    ├── iNaturalist18_train.txt
    ├── iNaturalist18_uniform.txt
    └── iNaturalist18_val.txt 

Pretrained models

  • For the training on Places-LT, we follow previous method and use the pre-trained model.
  • Please download the checkpoint. Unzip and move the checkpoint files to /model/pretrained_model_places/.

Script

ImageNet-LT

Training

  • To train the expertise-diverse model, run this command:
python train.py -c configs/config_imagenet_lt_resnext50_tade.json

Evaluate

  • To evaluate expertise-diverse model on the uniform test class distribution, run:
python test.py -r checkpoint_path
  • To evaluate expertise-diverse model on agnostic test class distributions, run:
python test_all_imagenet.py -r checkpoint_path

Test-time training

  • To test-time train the expertise-diverse model for agnostic test class distributions, run:
python test_train_imagenet.py -c configs/test_time_imagenet_lt_resnext50_tade.json -r checkpoint_path

CIFAR100-LT

Training

  • To train the expertise-diverse model, run this command:
python train.py -c configs/config_cifar100_ir100_tade.json
  • One can change the imbalance ratio from 100 to 10/50 by changing the config file.

Evaluate

  • To evaluate expertise-diverse model on the uniform test class distribution, run:
python test.py -r checkpoint_path
  • To evaluate expertise-diverse model on agnostic test class distributions, run:
python test_all_cifar.py -r checkpoint_path

Test-time training

  • To test-time train the expertise-diverse model for agnostic test class distributions, run:
python test_train_cifar.py -c configs/test_time_cifar100_ir100_tade.json -r checkpoint_path
  • One can change the imbalance ratio from 100 to 10/50 by changing the config file.

Places-LT

Training

  • To train the expertise-diverse model, run this command:
python train.py -c configs/config_places_lt_resnet152_tade.json

Evaluate

  • To evaluate expertise-diverse model on the uniform test class distribution, run:
python test_places.py -r checkpoint_path
  • To evaluate expertise-diverse model on agnostic test class distributions, run:
python test_all_places.py -r checkpoint_path

Test-time training

  • To test-time train the expertise-diverse model for agnostic test class distributions, run:
python test_train_places.py -c configs/test_time_places_lt_resnet152_tade.json -r checkpoint_path

iNaturalist 2018

Training

  • To train the expertise-diverse model, run this command:
python train.py -c configs/config_iNaturalist_resnet50_tade.json

Evaluate

  • To evaluate expertise-diverse model on the uniform test class distribution, run:
python test.py -r checkpoint_path
  • To evaluate expertise-diverse model on agnostic test class distributions, run:
python test_all_inat.py -r checkpoint_path

Test-time training

  • To test-time train the expertise-diverse model for agnostic test class distributions, run:
python test_train_inat.py -c configs/test_time_iNaturalist_resnet50_tade.json -r checkpoint_path

Citation

If you find our work inspiring or use our codebase in your research, please cite our work.

@article{zhang2021test,
  title={Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision},
  author={Zhang, Yifan and Hooi, Bryan and Hong, Lanqing and Feng, Jiashi},
  journal={arXiv},
  year={2021}
}

Acknowledgements

This is a project based on this pytorch template.

The mutli-expert framework are based on RIDE. The data generation of agnostic test class distributions takes references from LADE.

Owner
vanint
vanint
A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

420 Dec 28, 2022
OpenChat: Opensource chatting framework for generative models

OpenChat is opensource chatting framework for generative models.

Hyunwoong Ko 427 Jan 06, 2023
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
AIDynamicTextReader - A simple dynamic text reader based on Artificial intelligence

AI Dynamic Text Reader: This is a simple dynamic text reader based on Artificial

Md. Rakibul Islam 1 Jan 18, 2022
NLP, before and after spaCy

textacy: NLP, before and after spaCy textacy is a Python library for performing a variety of natural language processing (NLP) tasks, built on the hig

Chartbeat Labs Projects 2k Jan 04, 2023
Repository for fine-tuning Transformers 🤗 based seq2seq speech models in JAX/Flax.

Seq2Seq Speech in JAX A JAX/Flax repository for combining a pre-trained speech encoder model (e.g. Wav2Vec2, HuBERT, WavLM) with a pre-trained text de

Sanchit Gandhi 21 Dec 14, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

13.2k Jul 07, 2021
Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Housegan-data-reader House-GAN++ (data-reader) Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN

Sepid Hosseini 13 Nov 24, 2022
SDL: Synthetic Document Layout dataset

SDL is the project that synthesizes document images. It facilitates multiple-level labeling on document images and can generate in multiple languages.

Sơn Nguyễn 0 Oct 07, 2021
TPlinker for NER 中文/英文命名实体识别

本项目是参考 TPLinker 中HandshakingTagging思想,将TPLinker由原来的关系抽取(RE)模型修改为命名实体识别(NER)模型。

GodK 113 Dec 28, 2022
Semantic search through a vectorized Wikipedia (SentenceBERT) with the Weaviate vector search engine

Semantic search through Wikipedia with the Weaviate vector search engine Weaviate is an open source vector search engine with build-in vectorization a

SeMI Technologies 191 Dec 26, 2022
Code to reproduce the results of the paper 'Towards Realistic Few-Shot Relation Extraction' (EMNLP 2021)

Realistic Few-Shot Relation Extraction This repository contains code to reproduce the results in the paper "Towards Realistic Few-Shot Relation Extrac

Bloomberg 8 Nov 09, 2022
TalkNet: Audio-visual active speaker detection Model

Is someone talking? TalkNet: Audio-visual active speaker detection Model This repository contains the code for our ACM MM 2021 paper, TalkNet, an acti

142 Dec 14, 2022
Code repository for "It's About Time: Analog clock Reading in the Wild"

it's about time Code repository for "It's About Time: Analog clock Reading in the Wild" Packages required: pytorch (used 1.9, any reasonable version s

52 Nov 10, 2022
The code from the whylogs workshop in DataTalks.Club on 29 March 2022

whylogs Workshop The code from the whylogs workshop in DataTalks.Club on 29 March 2022 whylogs - The open source standard for data logging (Don't forg

DataTalksClub 12 Sep 05, 2022
Spokestack is a library that allows a user to easily incorporate a voice interface into any Python application with a focus on embedded systems.

Welcome to Spokestack Python! This library is intended for developing voice interfaces in Python. This can include anything from Raspberry Pi applicat

Spokestack 133 Sep 20, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Soohwan Kim 26 Dec 14, 2022
[NeurIPS 2021] Code for Learning Signal-Agnostic Manifolds of Neural Fields

Learning Signal-Agnostic Manifolds of Neural Fields This is the uncleaned code for the paper Learning Signal-Agnostic Manifolds of Neural Fields. The

60 Dec 12, 2022
The guide to tackle with the Text Summarization

The guide to tackle with the Text Summarization

Takahiro Kubo 1.2k Dec 30, 2022
This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Technique for Text Classification

The baseline code is for EDA: Easy Data Augmentation techniques for boosting performance on text classification tasks

Akbar Karimi 81 Dec 09, 2022