RANZCR-CLiP 7th Place Solution

Overview

RANZCR-CLiP 7th Place Solution

This repository is WIP. (18 Mar 2021)

pipeline

Installation

git clone https://github.com/analokmaus/kaggle-ranzcr-clip-public.git 
cd kaggle-ranzcr-clip-public
git clone https://github.com/analokmaus/kuma_utils.git 

kuma_utils is a toolbox I use for competitions and work. Check it out!

conda

conda env create -n {NEW NAME} -f environment.yaml

docker

WIP

IMPORTANT: timm version
Since segmentation_models_pytorch requires timm=0.3.2 which does not include ResNet200D.
I added latest timm=0.3.4 as timm_latest in the root directory.
In case you need ResNet200D, you must use import timm_latest.

Download datasets

┣ data
┃   ┣ ranzcr-clip
┃       ┣ (competition files)
┃       ┣ nih_chestxray
┃       ┃   ┣ (nih dataset)
┃       ┣ padchest
┃       ┃   ┣ (padchest dataset)
┃       ┣ mimic
┃           ┣ (mimic dataset)
┃
┣ kaggle-ranzcr-clip-public
    ┣ scripts

competition files

kaggle competitions download ranzcr-clip-catheter-line-classification

nih dataset

kaggle datasets download nih-chest-xrays/data

padchest dataset

kaggle datasets download raddar/padchest-tubes

mimic dataset

Due to the license, we cannot host MIMIC CXR dataset.
Please go to MIMIC CXR official website and download by yourself.

Benchmark

UNet-CNN (R1)

CV: 0.9661
Public LB: 0.970
Private LB: 0.973

python train.py --config Segmentation13
python train.py --config SegAndCls12
python inference.py --config SegAndCls12 # generate pseudo labels
python train_external.py --config PretrainStudent08l
python train.py --config SegAndCls12external6

UNet-CNN (E1)

CV: 0.9660
Public LB: 0.972
Private LB: 0.973

python train.py --config Segmentation15
python train.py --config SegAndCls14
python inference.py --config SegAndCls14 # generate pseudo labels
python train_external.py --config PretrainStudent09
python train.py --config SegAndCls14external2

Vanilla CNN (N1)

CV: 0.9671
Public LB: 0.970
Private LB: 0.972

(run training script by Y.Nakama)
python inference.py --config SingleModel02 # generate pseudo labels
python train_external.py --config Distillation03
python train.py --config SingleModel02external0

Test Environment

Adjust batch_size and relevant parameters (learning rate etc.) when you run script.

A machine with four V100 16GB (64GB total) was used to train the following configs:

  • Segmentation13
  • Segmentation15
  • SegAndCls12*
  • SegAndCls14*
  • PretrainStudent08*
  • PretrainStudent09*

A machine with two GF RTX 3090 24GB (48GB total) was used to train the following configs:

  • SingleModel02*
  • Distillation03
Owner
Hiroshechka Y
ML Engineer | Kaggle Master | Public Health
Hiroshechka Y
MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Burak Bagatarhan 12 Mar 29, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
Filtering variational quantum algorithms for combinatorial optimization

Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.

1 Feb 09, 2022
[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation

[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation [Paper] Prerequisites To install requirements: pip install -r requirements.txt

Guangrui Li 84 Dec 26, 2022
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 04, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
Project to create an open-source 6 DoF input device

6DInputs A Project to create open-source 3D printed 6 DoF input devices Note the plural ('6DInputs' and 'devices') in the headings. We would like seve

RepRap Ltd 47 Jul 28, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
OneShot Learning-based hotword detection.

EfficientWord-Net Hotword detection based on one-shot learning Home assistants require special phrases called hotwords to get activated (eg:"ok google

ANT-BRaiN 102 Dec 25, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
Change Detection in SAR Images Based on Multiscale Capsule Network

SAR_CD_MS_CapsNet Code for the paper "Change Detection in SAR Images Based on Multiscale Capsule Network" , IEEE Geoscience and Remote Sensing Letters

Feng Gao 21 Nov 29, 2022
Scheduling BilinearRewards

Scheduling_BilinearRewards Requirement Python 3 =3.5 Structure main.py This file includes the main function. For getting the results in Figure 1, ple

junghun.kim 0 Nov 25, 2021
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023
This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
Python module providing a framework to trace individual edges in an image using Gaussian process regression.

Edge Tracing using Gaussian Process Regression Repository storing python module which implements a framework to trace individual edges in an image usi

Jamie Burke 7 Dec 27, 2022
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022