The code of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Overview

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection

Pytorch implemetation of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Introduction

This repository contains demo of LAP (Learning to Aggregate and Personalize) framework for reconstructing 3D face. Right now we provide an early version of demo for testing on in-the-wild images. The output size is 128 and the model is finetuned on CelebAMask-HQ Dataset.

Requirments

The code is tested on pytorch 1.3.0 with torchvision 0.4.1

pip install torch==1.3.0
pip install torchvision==0.4.1

Neural renderer is needed to render the reconstructed images or videos

pip install neural_renderer_pytorch

It may fail if you have a GCC version below 5. If you do not want to upgrade your GCC, one alternative solution is to use conda's GCC and compile the package from source. For example:

conda install gxx_linux-64=7.3
git clone https://github.com/daniilidis-group/neural_renderer.git
cd neural_renderer
python setup.py install

Facenet is also needed to detect and crop human faces in images.

pip install facenet-pytorch

DEMO

Download the pretrained model, and then run:

python demo.py --input ./images --result ./results --checkpoint_lap ./demo/checkpoint300.pth

Options:

--gpu: enable gpu

--detect_human_face: enable automatic human face detection and cropping using MTCNN provided in facenet-pytorch

--render_video: render 3D animations using neural_renderer (GPU is required)

Note:

The output depth is transformed by several options and functions, including tanh(), depth_rescaler and depth_inv_rescaler for better visualization. You could search along these options to find the original output depth and rescale it to a required range. The defined direction of normal in normal maps may be different to your required setting. If you want to accelarate the inference procedure, you may delete the branches irrelavant to reconstruct depth, and set anti_aliasing=False in each renderer.

License

The code contained in this repository is under MIT License and is free for commercial and non-commercial purposes. The dependencies, in particular, neural-renderer-pytorch, facenet, may have its own license.

Citation

@InProceedings{Zhang_2021_CVPR,
    author    = {Zhang, Zhenyu and Ge, Yanhao and Chen, Renwang and Tai, Ying and Yan, Yan and Yang, Jian and Wang, Chengjie and Li, Jilin and Huang, Feiyue},
    title     = {Learning To Aggregate and Personalize 3D Face From In-the-Wild Photo Collection},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    year      = {2021},
    pages     = {14214-14224}
}
Owner
Tencent YouTu Research
Tencent YouTu Research
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
prior-based-losses-for-medical-image-segmentation

Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based

Rosana EL JURDI 9 Sep 07, 2022
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta

Peihao Zhu 579 Dec 30, 2022
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
Bottom-up Human Pose Estimation

Introduction This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2

108 Dec 01, 2022
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
PyTorch Implementation of Sparse DETR

Sparse DETR By Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, and Saehoon Kim at Kakao Brain. (*: Equal contribution) This repository is an official im

Kakao Brain 113 Dec 28, 2022