[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

Overview

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments?

[Paper] [ICML'21 Project]

PyTorch Implementation

This repository contains:

  • the PyTorch implementation of AutoEavl.
  • the example on CIFAR-10 setup (use imgaug)
  • linear regression

Please follow the instruction below to install it and run the experiment demo.

Prerequisites

  • Linux (tested on Ubuntu 16.04LTS)
  • NVIDIA GPU + CUDA CuDNN (tested on GTX 2080 Ti)
  • CIFAR-10 (download and unzip to PROJECT_DIR/data/)
  • CIFAR10.1 (download and unzip to PROJECT_DIR/data/CIFAR-10.1)
  • Please use PyTorch1.5 to avoid compilation errors (other versions should be good)
  • You might need to change the file paths, and please be sure you change the corresponding paths in the codes as well

Getting started

  1. Install dependencies
    # Imgaug (or see https://imgaug.readthedocs.io/en/latest/source/installation.html)
    conda config --add channels conda-forge
    conda install imgaug
  2. Creat synthetic sets
    # By default it creates 500 synthetic sets
    python generate_synthetic_sets.py
  3. Learn classifier on CIFAR-10 (DenseNet-10-12)
    # Save as "PROJECT_DIR/DenseNet-40-12-ss/checkpoint.pth.tar"
    # Modified based on the wonderful github of https://github.com/andreasveit/densenet-pytorch
    python train.py --layers 40 --growth 12 --no-bottleneck --reduce 1.0
  4. Test classifier on synthetic sets
    # 1) Get "PROJECT_DIR/accuracy_cls_dense_aug.npy" file
    # 2) Get "PROJECT_DIR/accuracy_ss_dense_aug.npy" file
    # 3) You will see Rank correlation and Pearsons correlation
    # 4) The absolute error of linear regression is also shown
    python test_many.py --layers 40 --growth 12 --no-bottleneck --reduce 1.0
  5. Correlation study
    # You will see correlation.pdf;
    python analyze_correlation.py
        

Citation

If you use the code in your research, please cite:

    @inproceedings{Deng:ICML2021,
      author    = {Weijian Deng and
                   Stephen Gould and
                   Liang Zheng},
      title     = {What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments?},
      booktitle = {ICML},
      year      = {2021}
    }

License

MIT

Owner
Third-year PhD student at ANU.
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Brad 24 Nov 11, 2022
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
Fast, accurate and reliable software for algebraic CT reconstruction

KCT CBCT Fast, accurate and reliable software for algebraic CT reconstruction. This set of software tools includes OpenCL implementation of modern CT

Vojtěch Kulvait 4 Dec 14, 2022
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022
Show-attend-and-tell - TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation

deep-hist PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation PyT

Winfried Lötzsch 10 Dec 06, 2022
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
Bu repo SAHI uygulamasını mantığını öğreniyoruz.

SAHI-Learn: SAHI'den Beraber Kodlamak İster Misiniz Herkese merhabalar ben Kadir Nar. SAHI kütüphanesine gönüllü geliştiriciyim. Bu repo SAHI kütüphan

Kadir Nar 11 Aug 22, 2022
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022