PyHarmonize: Adding harmony lines to recorded melodies in Python

Overview

PyHarmonize: Adding harmony lines to recorded melodies in Python

About

To use this module, the user provides

  • a wav file containing a melody,
  • the key in which the melody is, and
  • the scale degree(s) of the desired harmony.

The module then outputs a wav file which contains the original melody, together with the added harmony line(s).

We first give some examples, the installation instructions are further below.

Examples (with audio files)

We here provide three audio examples together with the code used to generate them. See the folder examples/ for more detailed example notebooks.

Note that the embedded mp4 video files that contain the audio in the following are by default muted.

Example 1: Added third on a distorted electric guitar

In this example we add a harmony line a third above the input melody, which is played on a distorted electric guitar. Here are the input signal used, as well as the final result:

guitar_distorted_E_major_ex1.mp4
guitar_distorted_E_major_ex1_added_3.mp4

And here is the code used to generate this output:

import PyHarmonize

# Create dictionary with parameters
parameters = {'input_filename':'./guitar_distorted_E_major_ex1.wav', # input audio is in the key of E major
              'output_filename':'./guitar_distorted_E_major_ex1_with_harmony.wav',
              'key':'E',
              'mode':'major'}

# Generate instance of the class harmony_generator
harmony_generator = PyHarmonize.harmony_generator(parameters=parameters)

# Add harmony
# Note that scale_degrees = [3] means we add one melody line,
# which is always three notes higher within the scale. Depending on the note
# played, "three notes higher within the scale" is either 3 or 4 semitones up.
output_dictionary = harmony_generator.add_harmonies(scale_degrees = [3])

Example 2: Added third and fifth on a distorted electric guitar

In this example we add two harmony lines to an input signal. Here are the input signal and the result:

guitar_distorted_E_major_ex2.mp4
guitar_distorted_E_major_ex2_added_3_5.mp4

The code for this example is essentially the same as in the first example, except that now the list scale_degrees contains more than one element:

import PyHarmonize

# Create dictionary with parameters
parameters = {'input_filename':'./guitar_distorted_E_major_ex2.wav', # input audio is in the key of E major
              'output_filename':'./guitar_distorted_E_major_ex2_with_harmony.wav',
              'key':'E',
              'mode':'major'}

# Generate instance of the class harmony_generator
harmony_generator = PyHarmonize.harmony_generator(parameters=parameters)

# Add harmony
output_dictionary = harmony_generator.add_harmonies(scale_degrees = [3, 5]) # add third and fifth

If we add some more octaves and thirds, we can generate a more synthesizer-like sound. Here is an example for that:

guitar_distorted_E_major_ex2_added_3_5_octaves.mp4

To generate this output, we pass scale_degrees = [-8, -6, 3, 5, 8, 10], which adds pitch shifted signals an octave lower (-8), the third one octave lower (-6), a third up (3), a fifth up (5), an octave up (8), and a third an octave higher (10).

Example 3: Added third, fifth, and octave on a clean electric guitar

In this example we add thirds, fifths, and octaves to a melody in A major, which is played on a clean electric guitar. Here are input and output files:

guitar_clean_A_major.mp4
guitar_clean_A_major_added_3_5_8.mp4

The code for generating this harmony is:

import PyHarmonize

# Create dictionary with parameters
parameters = {'input_filename':'./guitar_clean_A_major.wav', # input audio is in the key of A major
              'output_filename':'./guitar_clean_A_major_with_harmony.wav',
              'key':'A',
              'mode':'major'}

# Generate instance of the class harmony_generator
harmony_generator = PyHarmonize.harmony_generator(parameters=parameters)

# Add harmony
output_dictionary = harmony_generator.add_harmonies(scale_degrees = [3,5,8])
# The list
#       scale_degrees = [3, 5, 8]
# means that we add four melody lines:
# 1. a third up
# 2. a fifth up
# 3. one octave up

Installation

To install the module PyHarmonize, as well as its requirements (NumPy, SciPy, librosa, and SoundFile), clone this repository and run the installation script:

>> git clone https://github.com/juliankappler/PyHarmonize.git
>> cd PyHarmonize
>> pip install -r requirements.txt
>> python setup.py install
Owner
Julian Kappler
Julian Kappler
Factorization machines in python

Factorization Machines in Python This is a python implementation of Factorization Machines [1]. This uses stochastic gradient descent with adaptive re

Corey Lynch 892 Jan 03, 2023
A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

Johann Faouzi 1.4k Jan 01, 2023
A visual dataflow programming language for sklearn

Persimmon What is it? Persimmon is a visual dataflow language for creating sklearn pipelines. It represents functions as blocks, inputs and outputs ar

Álvaro Bermejo 194 Jan 04, 2023
Getting Profit and Loss Make Easy From Binance

Getting Profit and Loss Make Easy From Binance I have been in Binance Automated Trading for some time and have generated a lot of transaction records,

17 Dec 21, 2022
Forecast dynamically at scale with this unique package. pip install scalecast

🌄 Scalecast: Dynamic Forecasting at Scale About This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels

Michael Keith 158 Jan 03, 2023
Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Sean Zahller 1 Feb 04, 2022
Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022
Accelerating model creation and evaluation.

EmeraldML A machine learning library for streamlining the process of (1) cleaning and splitting data, (2) training, optimizing, and testing various mo

Yusuf 0 Dec 06, 2021
To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

Astitva Veer Garg 1 Jan 11, 2022
Relevance Vector Machine implementation using the scikit-learn API.

scikit-rvm scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API. Quicks

James Ritchie 204 Nov 18, 2022
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application

Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application (with docker-compose).

Philip May 2 Dec 03, 2021
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Dec 29, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Jan 09, 2023
SPCL 48 Dec 12, 2022
A Python library for choreographing your machine learning research.

A Python library for choreographing your machine learning research.

AI2 270 Jan 06, 2023
A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

Aayush Malik 80 Dec 12, 2022
Mixing up the Invariant Information clustering architecture, with self supervised concepts from SimCLR and MoCo approaches

Self Supervised clusterer Combined IIC, and Moco architectures, with some SimCLR notions, to get state of the art unsupervised clustering while retain

Bendidi Ihab 9 Feb 13, 2022
ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

Broad Institute 65 Dec 20, 2022