AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

Overview

AutoTabular

Paper Conference Conference Conference

AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models tabular data.

autotabular

[Toc]

What's good in it?

  • It is using the RAPIDS as back-end support, gives you the ability to execute end-to-end data science and analytics pipelines entirely on GPUs.
  • It Supports many anomaly detection models: ,
  • It using meta learning to accelerate model selection and parameter tuning.
  • It is using many Deep Learning models for tabular data: Wide&Deep, DCN(Deep & Cross Network), FM, DeepFM, PNN ...
  • It is using many machine learning algorithms: Baseline, Linear, Random Forest, Extra Trees, LightGBM, Xgboost, CatBoost, and Nearest Neighbors.
  • It can compute Ensemble based on greedy algorithm from Caruana paper.
  • It can stack models to build level 2 ensemble (available in Compete mode or after setting stack_models parameter).
  • It can do features preprocessing, like: missing values imputation and converting categoricals. What is more, it can also handle target values preprocessing.
  • It can do advanced features engineering, like: Golden Features, Features Selection, Text and Time Transformations.
  • It can tune hyper-parameters with not-so-random-search algorithm (random-search over defined set of values) and hill climbing to fine-tune final models.

Installation

The sources for AutoTabular can be downloaded from the Github repo.

You can either clone the public repository:

# clone project
git clone https://apulis-gitlab.apulis.cn/apulis/AutoTabular/autotabular.git
# First, install dependencies
pip install -r requirements.txt

Once you have a copy of the source, you can install it with:

python setup.py install

Example

Next, navigate to any file and run it.

# module folder
cd example

# run module (example: mnist as your main contribution)
python binary_classifier_Titanic.py

Auto Feature generate & Selection

TODO

Deep Feature Synthesis

import featuretools as ft
import pandas as pd
from sklearn.datasets import load_iris

# Load data and put into dataframe
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['species'] = iris.target
df['species'] = df['species'].map({
    0: 'setosa',
    1: 'versicolor',
    2: 'virginica'
})
# Make an entityset and add the entity
es = ft.EntitySet()
es.add_dataframe(
    dataframe_name='data', dataframe=df, make_index=True, index='index')
# Run deep feature synthesis with transformation primitives
feature_matrix, feature_defs = ft.dfs(
    entityset=es,
    max_depth=3,
    target_dataframe_name='data',
    agg_primitives=['mode', 'mean', 'max', 'count'],
    trans_primitives=[
        'add_numeric', 'multiply_numeric', 'cum_min', 'cum_mean', 'cum_max'
    ],
    groupby_trans_primitives=['cum_sum'])

print(feature_defs)
print(feature_matrix.head())
print(feature_matrix.ww)

GBDT Feature Generate

from autofe.feature_engineering.gbdt_feature import CatboostFeatureTransformer, GBDTFeatureTransformer, LightGBMFeatureTransformer, XGBoostFeatureTransformer

titanic = pd.read_csv('autotabular/datasets/data/Titanic.csv')
# 'Embarked' is stored as letters, so fit a label encoder to the train set to use in the loop
embarked_encoder = LabelEncoder()
embarked_encoder.fit(titanic['Embarked'].fillna('Null'))
# Record anyone travelling alone
titanic['Alone'] = (titanic['SibSp'] == 0) & (titanic['Parch'] == 0)
# Transform 'Embarked'
titanic['Embarked'].fillna('Null', inplace=True)
titanic['Embarked'] = embarked_encoder.transform(titanic['Embarked'])
# Transform 'Sex'
titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 0
titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 1
titanic['Sex'] = titanic['Sex'].astype('int8')
# Drop features that seem unusable. Save passenger ids if test
titanic.drop(['Name', 'Ticket', 'Cabin'], axis=1, inplace=True)

trainMeans = titanic.groupby(['Pclass', 'Sex'])['Age'].mean()

def f(x):
    if not np.isnan(x['Age']):  # not NaN
        return x['Age']
    return trainMeans[x['Pclass'], x['Sex']]

titanic['Age'] = titanic.apply(f, axis=1)
rows = titanic.shape[0]
n_train = int(rows * 0.77)
train_data = titanic[:n_train, :]
test_data = titanic[n_train:, :]

X_train = titanic.drop(['Survived'], axis=1)
y_train = titanic['Survived']

clf = XGBoostFeatureTransformer(task='classification')
clf.fit(X_train, y_train)
result = clf.concate_transform(X_train)
print(result)

clf = LightGBMFeatureTransformer(task='classification')
clf.fit(X_train, y_train)
result = clf.concate_transform(X_train)
print(result)

clf = GBDTFeatureTransformer(task='classification')
clf.fit(X_train, y_train)
result = clf.concate_transform(X_train)
print(result)

clf = CatboostFeatureTransformer(task='classification')
clf.fit(X_train, y_train)
result = clf.concate_transform(X_train)
print(result)

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score

lr = LogisticRegression()
x_train_gb, x_test_gb, y_train_gb, y_test_gb = train_test_split(
    result, y_train)
x_train, x_test, y_train, y_test = train_test_split(X_train, y_train)

lr.fit(x_train, y_train)
score = roc_auc_score(y_test, lr.predict(x_test))
print('LR with GBDT apply data, train data shape : {0}  auc: {1}'.format(
    x_train.shape, score))

lr = LogisticRegression()
lr.fit(x_train_gb, y_train_gb)
score = roc_auc_score(y_test_gb, lr.predict(x_test_gb))
print('LR with GBDT apply data, train data shape : {0}  auc: {1}'.format(
    x_train_gb.shape, score))

Golden Feature Generate

from autofe import GoldenFeatureTransform

titanic = pd.read_csv('autotabular/datasets/data/Titanic.csv')
embarked_encoder = LabelEncoder()
embarked_encoder.fit(titanic['Embarked'].fillna('Null'))
# Record anyone travelling alone
titanic['Alone'] = (titanic['SibSp'] == 0) & (titanic['Parch'] == 0)
# Transform 'Embarked'
titanic['Embarked'].fillna('Null', inplace=True)
titanic['Embarked'] = embarked_encoder.transform(titanic['Embarked'])
# Transform 'Sex'
titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 0
titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 1
titanic['Sex'] = titanic['Sex'].astype('int8')
# Drop features that seem unusable. Save passenger ids if test
titanic.drop(['Name', 'Ticket', 'Cabin'], axis=1, inplace=True)

trainMeans = titanic.groupby(['Pclass', 'Sex'])['Age'].mean()

def f(x):
    if not np.isnan(x['Age']):  # not NaN
        return x['Age']
    return trainMeans[x['Pclass'], x['Sex']]

titanic['Age'] = titanic.apply(f, axis=1)

X_train = titanic.drop(['Survived'], axis=1)
y_train = titanic['Survived']
print(X_train)
gbdt_model = GoldenFeatureTransform(
    results_path='./', ml_task='BINARY_CLASSIFICATION')
gbdt_model.fit(X_train, y_train)
results = gbdt_model.transform(X_train)
print(results)

Neural Network Embeddings

# data url
"""https://www.kaggle.com/c/house-prices-advanced-regression-techniques."""
data_dir = '/media/robin/DATA/datatsets/structure_data/house_price/train.csv'
data = pd.read_csv(
    data_dir,
    usecols=[
        'SalePrice', 'MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea',
        'Street', 'YearBuilt', 'LotShape', '1stFlrSF', '2ndFlrSF'
    ]).dropna()

categorical_features = [
    'MSSubClass', 'MSZoning', 'Street', 'LotShape', 'YearBuilt'
]
output_feature = 'SalePrice'
label_encoders = {}
for cat_col in categorical_features:
    label_encoders[cat_col] = LabelEncoder()
    data[cat_col] = label_encoders[cat_col].fit_transform(data[cat_col])

dataset = TabularDataset(
    data=data, cat_cols=categorical_features, output_col=output_feature)

batchsize = 64
dataloader = DataLoader(dataset, batchsize, shuffle=True, num_workers=1)

cat_dims = [int(data[col].nunique()) for col in categorical_features]
emb_dims = [(x, min(50, (x + 1) // 2)) for x in cat_dims]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = FeedForwardNN(
    emb_dims,
    no_of_cont=4,
    lin_layer_sizes=[50, 100],
    output_size=1,
    emb_dropout=0.04,
    lin_layer_dropouts=[0.001, 0.01]).to(device)
print(model)
num_epochs = 100
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
for epoch in range(num_epochs):
    for y, cont_x, cat_x in dataloader:
        cat_x = cat_x.to(device)
        cont_x = cont_x.to(device)
        y = y.to(device)
        # Forward Pass
        preds = model(cont_x, cat_x)
        loss = criterion(preds, y)
        # Backward Pass and Optimization
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print('loss:', loss)

License

This library is licensed under the Apache 2.0 License.

Contributing to AutoTabular

We are actively accepting code contributions to the AutoTabular project. If you are interested in contributing to AutoTabular, please contact me.

Owner
wenqi
Learning is all you need!
wenqi
Meerkat provides fast and flexible data structures for working with complex machine learning datasets.

Meerkat makes it easier for ML practitioners to interact with high-dimensional, multi-modal data. It provides simple abstractions for data inspection, model evaluation and model training supported by

Robustness Gym 115 Dec 12, 2022
Scikit learn library models to account for data and concept drift.

liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d

7 Nov 18, 2021
Simple Machine Learning Tool Kit

Getting started smltk (Simple Machine Learning Tool Kit) package is implemented for helping your work during data preparation testing your model The g

Alessandra Bilardi 1 Dec 30, 2021
Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices

Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and t

164 Jan 04, 2023
A simple python program that draws a tree for incrementing values using the Collatz Conjecture.

Collatz Conjecture A simple python program that draws a tree for incrementing values using the Collatz Conjecture. Values which can be edited: Length

davidgasinski 1 Oct 28, 2021
Machine learning template for projects based on sklearn library.

Machine learning template for projects based on sklearn library.

Janez Lapajne 17 Oct 28, 2022
Lightweight Machine Learning Experiment Logging πŸ“–

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022
Project to deploy a machine learning model based on Titanic dataset from Kaggle

kaggle_titanic_deploy Project to deploy a machine learning model based on Titanic dataset from Kaggle In this project we used the Titanic dataset from

Vivian Yamassaki 8 May 23, 2022
LightGBM + Optuna: no brainer

AutoLGBM LightGBM + Optuna: no brainer auto train lightgbm directly from CSV files auto tune lightgbm using optuna auto serve best lightgbm model usin

Rishiraj Acharya 22 Dec 15, 2022
UpliftML: A Python Package for Scalable Uplift Modeling

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base l

Booking.com 254 Dec 31, 2022
Machine Learning Study 혼자 해보기

Machine Learning Study 혼자 해보기 κΈ°μ—¬μž (Contributors) ✨ Teddy Lee 🏠 HongJaeKwon 🏠 Seungwoo Han 🏠 Tae Heon Kim 🏠 Steve Kwon 🏠 SW Song 🏠 K1A2 🏠 Wooil

Teddy Lee 1.7k Jan 01, 2023
A Python toolbox to churn out organic alkalinity calculations with minimal brain engagement.

Organic Alkalinity Sausage Machine A Python toolbox to churn out organic alkalinity calculations with minimal brain engagement. Getting started To mak

Charles Turner 1 Feb 01, 2022
A game theoretic approach to explain the output of any machine learning model.

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo

Scott Lundberg 18.2k Jan 02, 2023
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
Flightfare-Prediction - It is a Flightfare Prediction Web Application Using Machine learning,Python and flask

Flight_fare-Prediction It is a Flight_fare Prediction Web Application Using Machine learning,Python and flask Using Machine leaning i have created a F

1 Dec 06, 2022
A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching.

A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching. The solver will solve equations of the type: A can be

Sanjeet N. Dasharath 3 Feb 15, 2022
This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing variance.

minvar_invest_portfolio This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing var

1 Jan 06, 2022
Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Thines Kumar 1 Jan 31, 2022
MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.

MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. Th

Swiggy 66 Dec 06, 2022