Exploration-Exploitation Dilemma Solving Methods

Overview

Exploration-Exploitation Dilemma Solving Methods

Medium article for this repo - HERE

In ths repo I implemented two techniques for tackling mentioned tradeoff. Methods Include:-

  • Epsilon Greedy (With different epsilons)
  • Thompson Sampling(also known as posterior sampling)

The reason for choosing these two only is to show the upper and lower bounds as epsilons are a starting point in dealing with these tradeoffs and Thompson Sampling is considered a recent state of the Art in this field.

ENV SPECIFICATIONS - A 10 arm testbed is simulated as same demonstrated in Sutton-Barto Book.
True Reward distribution (Here Action-2 is best)

Comparison Greedy(or Epsilon Greedies and TS

we used three different epsilons here for testing i.e:

  • epsilon = 0 => Greedy Agent
  • epsilon = 0.01 => exploration with 1% probability
  • epsilon = 0.1 => exploration with 10% probability

and TS

Averaged Over 2500 independent runs with 1500 timesteps

Comparison


Percentage Actions selected for epsilon = 0.01 and TS

Conclusion -> epsilon = 0.01 can be considered best for eps-greedies as it is increasing but pretty slow and the percentage Optimal Actions for it is Around 80% in later stages, on the other hand Thomsan Sampling shows a significant improvement in these results as it quickly explores and then exploit the optimal one with percentage goes upto almost 100 even very early!!.

In case you want to know more about TS visit this Reference.

Owner
Aman Mishra
B.Tech @ IIT BHU | Core interest in Digital Electronics, Statistics, Probability and Vector Calculus + their applications in Deep Learning and Robotics
Aman Mishra
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022
Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Improving Contrastive Learning by Visualizing Feature Transformation This project hosts the codes, models and visualization tools for the paper: Impro

Bingchen Zhao 83 Dec 15, 2022
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

EmbedSeg Introduction This repository hosts the version of the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

JugLab 88 Dec 25, 2022
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"

StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois

THUNLP 19 Nov 20, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
Proto-RL: Reinforcement Learning with Prototypical Representations

Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto

Denis Yarats 74 Dec 06, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
Transferable Unrestricted Attacks, which won 1st place in CVPR’21 Security AI Challenger: Unrestricted Adversarial Attacks on ImageNet.

Transferable Unrestricted Adversarial Examples This is the PyTorch implementation of the Arxiv paper: Towards Transferable Unrestricted Adversarial Ex

equation 16 Dec 29, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019) To make better use of given limited labels, we propo

126 Sep 13, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

143 Dec 28, 2022