An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

Related tags

Deep LearningGLOM
Overview

GLOM

An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this implementation, please watch Yannick Kilcher's GLOM video, then read this README.md, then read the code.

Running

Open in jupyter notebook to run. Program expects an Nvidia graphics card for gpu speedup. If you run out of gpu memory, decrease the batch_size variable. If you want to look at the code on github and it fails, try reloading or refreshing several times.

Results

The best models, which have been posted under the best_models folder, reached an accuracy of about 91%.

Implementation details

Three Types of networks per layer of vectors

  1. Top-Down Network
  2. Bottom-up Network
  3. Attention on the same layer Network

Intro to State

There is an initial state that all three types of network outputs get added to after every time step. The bottom layer of the state is the input vector where the MNIST pixel data is kept and doesn't get anything added to it to retain the MNIST pixel data. The top layer of the state is the output layer where the loss function is applied and trained to be the one-hot MNIST target vector.

Explanation of compute_all function

Each type of network will see a 3x3 grid of vectors surrounding the current network input vector at the current layer. This is done to allow information to travel faster laterally across vectors, allowing for more information to be sent across an image in less steps. The easy way to do this is to shift (or roll) every vector along the x and y axis and then concatenate the vectors ontop of eachother so that every place a vector used to be in the state, now contains every vector and its neighboring vectors in the same layer. This also connects the edges of the image so that data can be passed from one edge of the image to the other, reducing the maximum distance any two pixels or vectors can be from one another.

For a more complex dataset, its possible this could pose some issues since two separate edges of an image aren't generally continous, but for MNIST, this problem doesn't arise. Then, these vectors are fed to each type of model. The models will get an input of all neighboring state vectors for a certain layer for each pixel that is given. Each model will then output a single vector. But there are 3 types of models per layer. In this example, every line drawn is a new model that is reused for every pixel this process is done for. After each model type has given an output, the three lists of vectors are added together.

This will give a single list of vectors that will be added to the corresponding list of vectors at the specific x,y coordinate from the original state.

Repeating this step for every list of vectors per x,y coordinate in the original state will yield the full new State value.

Since each network only sees a 3x3 grid and not larger image patches, this technique can be used for any size images and is easily parrallelizable.

If I had more compute

My 2080Ti runs into memory errors running this if the batch size is above around 30, so here are my implementatin ideas if I had more compute.

  1. Increase batch_size. This probably wont affect the training, but it would make testing the accuracy faster.
  2. Saving more states throughout the steps taken and adding them together. This would allow for gradients to get passed back to the original state similar to how RESNET can train very large model since the gradients can get passed backwards easier. This has been implemented to a smaller degree already and showed massive accuracy improvements.
  3. Perform some kind of evolutionary parameter search by mutating the model parameters while also using backprop. This has been shown to improve the accuracy of image classifiers and other models. But this would take a ton of compute.

Yannic Kilcher's Attention

This hass been pushed to github because during testing and tuning hyperparameters, a better model than previous was found. More testing needs to be done and I'm working on the visual explanation for it now. Previous versions of this code don't have the attention seen in the current version and will have similar performance.

Other Ideas behind the paper implementation

This is basically a neural cellular automata from the paper Growing Neural Cellular Automata with some inspiration from the follow up paper Self-classifying MNIST Digits. Except instead of a single list of numbers (or one vector) per pixel, there are several vectors per pixel in each image. The Growing Neural Cellular Automata paper was very difficult to train also because the long gradient chains, so increasing the models complexity in this GLOM paper makes training even harder. But the neural cellular automata papers are the reason why the MSE loss function is used while also adding random noise to the state during training.

To do

  1. Generated the explanation for Yannick Kilcher's version of attention that is implemented here.
  2. See if part-whole heirarchies are being found.
  3. Keep testing hyperpatameters to push accuracy higher.
  4. Test different state initializations.
  5. Train on harder datasets.

If you find any issues, please feel free to contact me

Owner
Just a random coder
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 01, 2023
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

Doron Adler 43 Oct 03, 2022
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
Official Pytorch Code for the paper TransWeather

TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,

Jeya Maria Jose 81 Dec 30, 2022
Bayesian Deep Learning and Deep Reinforcement Learning for Object Shape Error Response and Correction of Manufacturing Systems

Bayesian Deep Learning for Manufacturing 2.0 (dlmfg) Object Shape Error Response (OSER) Digital Lifecycle Management - In Process Quality Improvement

Sumit Sinha 30 Oct 31, 2022
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
The King is Naked: on the Notion of Robustness for Natural Language Processing

the-king-is-naked: on the notion of robustness for natural language processing AAAI2022 DISCLAIMER:This repo will be updated soon with instructions on

Iperboreo_ 1 Nov 24, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

THUML @ Tsinghua University 35 Sep 23, 2022
Lab Materials for MIT 6.S191: Introduction to Deep Learning

This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available

Alexander Amini 5.6k Dec 26, 2022
PyTorch implementation of MICCAI 2018 paper "Liver Lesion Detection from Weakly-labeled Multi-phase CT Volumes with a Grouped Single Shot MultiBox Detector"

Grouped SSD (GSSD) for liver lesion detection from multi-phase CT Note: the MICCAI 2018 paper only covers the multi-phase lesion detection part of thi

Sang-gil Lee 36 Oct 12, 2022