An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

Related tags

Deep LearningGLOM
Overview

GLOM

An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this implementation, please watch Yannick Kilcher's GLOM video, then read this README.md, then read the code.

Running

Open in jupyter notebook to run. Program expects an Nvidia graphics card for gpu speedup. If you run out of gpu memory, decrease the batch_size variable. If you want to look at the code on github and it fails, try reloading or refreshing several times.

Results

The best models, which have been posted under the best_models folder, reached an accuracy of about 91%.

Implementation details

Three Types of networks per layer of vectors

  1. Top-Down Network
  2. Bottom-up Network
  3. Attention on the same layer Network

Intro to State

There is an initial state that all three types of network outputs get added to after every time step. The bottom layer of the state is the input vector where the MNIST pixel data is kept and doesn't get anything added to it to retain the MNIST pixel data. The top layer of the state is the output layer where the loss function is applied and trained to be the one-hot MNIST target vector.

Explanation of compute_all function

Each type of network will see a 3x3 grid of vectors surrounding the current network input vector at the current layer. This is done to allow information to travel faster laterally across vectors, allowing for more information to be sent across an image in less steps. The easy way to do this is to shift (or roll) every vector along the x and y axis and then concatenate the vectors ontop of eachother so that every place a vector used to be in the state, now contains every vector and its neighboring vectors in the same layer. This also connects the edges of the image so that data can be passed from one edge of the image to the other, reducing the maximum distance any two pixels or vectors can be from one another.

For a more complex dataset, its possible this could pose some issues since two separate edges of an image aren't generally continous, but for MNIST, this problem doesn't arise. Then, these vectors are fed to each type of model. The models will get an input of all neighboring state vectors for a certain layer for each pixel that is given. Each model will then output a single vector. But there are 3 types of models per layer. In this example, every line drawn is a new model that is reused for every pixel this process is done for. After each model type has given an output, the three lists of vectors are added together.

This will give a single list of vectors that will be added to the corresponding list of vectors at the specific x,y coordinate from the original state.

Repeating this step for every list of vectors per x,y coordinate in the original state will yield the full new State value.

Since each network only sees a 3x3 grid and not larger image patches, this technique can be used for any size images and is easily parrallelizable.

If I had more compute

My 2080Ti runs into memory errors running this if the batch size is above around 30, so here are my implementatin ideas if I had more compute.

  1. Increase batch_size. This probably wont affect the training, but it would make testing the accuracy faster.
  2. Saving more states throughout the steps taken and adding them together. This would allow for gradients to get passed back to the original state similar to how RESNET can train very large model since the gradients can get passed backwards easier. This has been implemented to a smaller degree already and showed massive accuracy improvements.
  3. Perform some kind of evolutionary parameter search by mutating the model parameters while also using backprop. This has been shown to improve the accuracy of image classifiers and other models. But this would take a ton of compute.

Yannic Kilcher's Attention

This hass been pushed to github because during testing and tuning hyperparameters, a better model than previous was found. More testing needs to be done and I'm working on the visual explanation for it now. Previous versions of this code don't have the attention seen in the current version and will have similar performance.

Other Ideas behind the paper implementation

This is basically a neural cellular automata from the paper Growing Neural Cellular Automata with some inspiration from the follow up paper Self-classifying MNIST Digits. Except instead of a single list of numbers (or one vector) per pixel, there are several vectors per pixel in each image. The Growing Neural Cellular Automata paper was very difficult to train also because the long gradient chains, so increasing the models complexity in this GLOM paper makes training even harder. But the neural cellular automata papers are the reason why the MSE loss function is used while also adding random noise to the state during training.

To do

  1. Generated the explanation for Yannick Kilcher's version of attention that is implemented here.
  2. See if part-whole heirarchies are being found.
  3. Keep testing hyperpatameters to push accuracy higher.
  4. Test different state initializations.
  5. Train on harder datasets.

If you find any issues, please feel free to contact me

Owner
Just a random coder
PyTorch Personal Trainer: My framework for deep learning experiments

Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects

Alex McKinney 8 Jul 14, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
Code and dataset for ACL2018 paper "Exploiting Document Knowledge for Aspect-level Sentiment Classification"

Aspect-level Sentiment Classification Code and dataset for ACL2018 [paper] ‘‘Exploiting Document Knowledge for Aspect-level Sentiment Classification’’

Ruidan He 146 Nov 29, 2022
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Generating Band-Limited Adversarial Surfaces Using Neural Networks

Generating Band-Limited Adversarial Surfaces Using Neural Networks This is the official repository of the technical report that was published on arXiv

3 Jul 26, 2022
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* Any questions or discussions ar

sunshine.lwt 112 Jan 05, 2023
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
SmoothGrad implementation in PyTorch

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
Joint Detection and Identification Feature Learning for Person Search

Person Search Project This repository hosts the code for our paper Joint Detection and Identification Feature Learning for Person Search. The code is

712 Dec 17, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

beringresearch 285 Jan 04, 2023
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023