Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

Overview

MMDetection3D 代码注释

  • 调试过程可参考:https://zhuanlan.zhihu.com/p/444441266
  • 注:由于MMDetection3D依赖与MMDetection和MMCV,因此代码注释不全,具体参考流程图利用pycharm调试分析即可

docs badge codecov license

News: We released the codebase v0.17.2.

In addition, we have preliminarily supported several new models on the v1.0.0.dev0 branch, including DGCNN, SMOKE and PGD.

Note: We are going through large refactoring to provide simpler and more unified usage of many modules. Thus, few features will be added to the master branch in the following months.

The compatibilities of models are broken due to the unification and simplification of coordinate systems. For now, most models are benchmarked with similar performance, though few models are still being benchmarked.

You can start experiments with v1.0.0.dev0 if you are interested. Please note that our new features will only be supported in v1.0.0 branch afterward.

In the nuScenes 3D detection challenge of the 5th AI Driving Olympics in NeurIPS 2020, we obtained the best PKL award and the second runner-up by multi-modality entry, and the best vision-only results.

Code and models for the best vision-only method, FCOS3D, have been released. Please stay tuned for MoCa.

Documentation: https://mmdetection3d.readthedocs.io/

Introduction

English | 简体中文

The master branch works with PyTorch 1.3+.

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

demo image

Major features

  • Support multi-modality/single-modality detectors out of box

    It directly supports multi-modality/single-modality detectors including MVXNet, VoteNet, PointPillars, etc.

  • Support indoor/outdoor 3D detection out of box

    It directly supports popular indoor and outdoor 3D detection datasets, including ScanNet, SUNRGB-D, Waymo, nuScenes, Lyft, and KITTI. For nuScenes dataset, we also support nuImages dataset.

  • Natural integration with 2D detection

    All the about 300+ models, methods of 40+ papers, and modules supported in MMDetection can be trained or used in this codebase.

  • High efficiency

    It trains faster than other codebases. The main results are as below. Details can be found in benchmark.md. We compare the number of samples trained per second (the higher, the better). The models that are not supported by other codebases are marked by ×.

    Methods MMDetection3D OpenPCDet votenet Det3D
    VoteNet 358 × 77 ×
    PointPillars-car 141 × × 140
    PointPillars-3class 107 44 × ×
    SECOND 40 30 × ×
    Part-A2 17 14 × ×

Like MMDetection and MMCV, MMDetection3D can also be used as a library to support different projects on top of it.

License

This project is released under the Apache 2.0 license.

Changelog

v0.17.2 was released in 1/11/2021. Please refer to changelog.md for details and release history.

For branch v1.0.0.dev0, please refer to changelog_v1.0.md for our latest features and more details.

Benchmark and model zoo

Supported methods and backbones are shown in the below table. Results and models are available in the model zoo.

Support backbones:

  • PointNet (CVPR'2017)
  • PointNet++ (NeurIPS'2017)
  • RegNet (CVPR'2020)

Support methods

ResNet ResNeXt SENet PointNet++ HRNet RegNetX Res2Net
SECOND
PointPillars
FreeAnchor
VoteNet
H3DNet
3DSSD
Part-A2
MVXNet
CenterPoint
SSN
ImVoteNet
FCOS3D
PointNet++
Group-Free-3D
ImVoxelNet
PAConv

Other features

Note: All the about 300+ models, methods of 40+ papers in 2D detection supported by MMDetection can be trained or used in this codebase.

Installation

Please refer to getting_started.md for installation.

Get Started

Please see getting_started.md for the basic usage of MMDetection3D. We provide guidance for quick run with existing dataset and with customized dataset for beginners. There are also tutorials for learning configuration systems, adding new dataset, designing data pipeline, customizing models, customizing runtime settings and Waymo dataset.

Please refer to FAQ for frequently asked questions. When updating the version of MMDetection3D, please also check the compatibility doc to be aware of the BC-breaking updates introduced in each version.

Citation

If you find this project useful in your research, please consider cite:

@misc{mmdet3d2020,
    title={{MMDetection3D: OpenMMLab} next-generation platform for general {3D} object detection},
    author={MMDetection3D Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmdetection3d}},
    year={2020}
}

Contributing

We appreciate all contributions to improve MMDetection3D. Please refer to CONTRIBUTING.md for the contributing guideline.

Acknowledgement

MMDetection3D is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new 3D detectors.

Projects in OpenMMLab

  • MMCV: OpenMMLab foundational library for computer vision.
  • MIM: MIM Installs OpenMMLab Packages.
  • MMClassification: OpenMMLab image classification toolbox and benchmark.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMDetection3D: OpenMMLab next-generation platform for general 3D object detection.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
  • MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
  • MMTracking: OpenMMLab video perception toolbox and benchmark.
  • MMPose: OpenMMLab pose estimation toolbox and benchmark.
  • MMEditing: OpenMMLab image and video editing toolbox.
  • MMOCR: OpenMMLab text detection, recognition and understanding toolbox.
  • MMGeneration: OpenMMLab image and video generative models toolbox.
Owner
Jiangjingwen
Why are you trying so hard to fit in when you were born to stand out.
Jiangjingwen
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
Transformer part of 12th place solution in Riiid! Answer Correctness Prediction

kaggle_riiid Transformer part of 12th place solution in Riiid! Answer Correctness Prediction. Please see here for more information. Execution You need

Sakami Kosuke 2 Apr 23, 2022
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

123 Dec 27, 2022
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022
DanceTrack: Multiple Object Tracking in Uniform Appearance and Diverse Motion

DanceTrack DanceTrack is a benchmark for tracking multiple objects in uniform appearance and diverse motion. DanceTrack provides box and identity anno

260 Dec 28, 2022
GPU-accelerated Image Processing library using OpenCL

pyclesperanto pyclesperanto is a python package for clEsperanto - a multi-language framework for GPU-accelerated image processing. clEsperanto uses Op

17 Dec 25, 2022
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
A hue shift helper for OBS

obs-hue-shift A hue shift helper for OBS This is a repo based on the really nice script Hegemege made. The original script can be found https://gist.g

Alexis Tyler 1 Jan 10, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
Reference implementation for Structured Prediction with Deep Value Networks

Deep Value Network (DVN) This code is a python reference implementation of DVNs introduced in Deep Value Networks Learn to Evaluate and Iteratively Re

Michael Gygli 55 Feb 02, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务

shaochenjie 131 Dec 31, 2022