web application for flight log analysis & review

Overview

Flight Review

Build Status

This is a web application for flight log analysis. It allows users to upload ULog flight logs, and analyze them through the browser.

It uses the bokeh library for plotting and the Tornado Web Server.

Flight Review is deployed at https://review.px4.io.

Plot View

3D View

3D View

Installation and Setup

Requirements

Ubuntu

sudo apt-get install sqlite3 fftw3 libfftw3-dev

Note: Under some Ubuntu and Debian environments you might have to install ATLAS

sudo apt-get install libatlas3-base

macOS

macOS already provides SQLite3. Use Homebrew to install fftw:

brew install fftw

Installation

# After git clone, enter the directory
git clone --recursive https://github.com/PX4/flight_review.git
cd flight_review/app
pip install -r requirements.txt
# Note: preferably use a virtualenv

Setup

  • By default the app will load config_default.ini configuration file
  • You can override any setting from config_default.ini with a user config file config_user.ini (untracked)
  • Any setting on config_user.ini has priority over config_default.ini
  • Run setup_db.py to initialize the database.

Note: setup_db.py can also be used to upgrade the database tables, for instance when new entries are added (it automatically detects that).

Usage

For local usage, the server can be started directly with a log file name, without having to upload it first:

cd app
./serve.py -f <file.ulg>

To start the whole web application:

cd app
./serve.py --show

The plot_app directory contains a bokeh server application for plotting. It can be run stand-alone with bokeh serve --show plot_app (or with cd plot_app; bokeh serve --show main.py, to start without the html template).

The whole web application is run with the serve.py script. Run ./serve.py -h for further details.

Interactive Usage

The plotting can also be used interative using a Jupyter Notebook. It requires python knowledge, but provides full control over what and how to plot with immediate feedback.

  • Start the notebook
  • Locate and open the test notebook file testing_notebook.ipynb.
# Launch jupyter notebook
jupyter notebook testing_notebook.ipynb

Implementation

The web site is structured around a bokeh application in app/plot_app (app/plot_app/configured_plots.py contains all the configured plots). This application also handles the statistics page, as it contains bokeh plots as well. The other pages (upload, browse, ...) are implemented as tornado handlers in app/tornado_handlers/.

plot_app/helper.py additionally contains a list of log topics that the plot application can subscribe to. A topic must live in this list in order to be plotted.

Tornado uses a single-threaded event loop. This means all operations should be non-blocking (see also http://www.tornadoweb.org/en/stable/guide/async.html). (This is currently not the case for sending emails).

Reading ULog files is expensive and thus should be avoided if not really necessary. There are two mechanisms helping with that:

  • Loaded ULog files are kept in RAM using an LRU cache with configurable size (when using the helper method). This works from different requests and sessions and from all source contexts.
  • There's a LogsGenerated DB table, which contains extracted data from ULog for faster access.

Caching

In addition to in-memory caching there is also some on-disk caching: KML files are stored on disk. Also the parameters and airframes are cached and downloaded every 24 hours. It is safe to delete these files (but not the cache directory).

Notes about python imports

Bokeh uses dynamic code loading and the plot_app/main.py gets loaded on each session (page load) to isolate requests. This also means we cannot use relative imports. We have to use sys.path.append to include modules in plot_app from the root directory (Eg tornado_handlers.py). Then to make sure the same module is only loaded once, we use import xy instead of import plot_app.xy. It's useful to look at print('\n'.join(sys.modules.keys())) to check this.

Docker usage

This section explains how to work with docker.

Arguments

Edit the .env file according to your setup:

  • PORT - The number of port, what listen service in docker, default 5006
  • USE_PROXY - The set his, if you use reverse proxy (Nginx, ...)
  • DOMAIN - The address domain name for origin, default = *
  • CERT_PATH - The SSL certificate volume path
  • EMAIL - Email for challenging Let's Encrypt DNS

Paths

  • /opt/service/config_user.ini - Path for config
  • /opt/service/data - Folder where stored database
  • .env - Environment variables for nginx and app docker container

Build Docker Image

cd app
docker build -t px4flightreview -f Dockerfile .

Work with docker-compose

Run the following command to start docker container. Please modify the .env and add app/config_user.ini with respective stages.

Uncomment the BOKEH_ALLOW_WS_ORIGIN with your local IP Address when developing, this is for the bokeh application's websocket to work.

Development

docker-compose -f docker-compose.dev.yml up

Test Locally

Test locally with nginx:

docker-compose up

Remember to Change NGINX_CONF to use default_ssl.conf and add the EMAIL for production.

Production

htpasswd -c ./nginx/.htpasswd username
# here to create a .htpasswd for nginx basic authentication
chmod u+x init-letsencrypt.sh
./init-letsencrypt.sh

Contributing

Contributions are welcome! Just open a pull request with detailed description why the changes are needed, or open an issue for bugs, feature requests, etc...

Owner
PX4 Drone Autopilot
Professional Open Source Autopilot Stack
PX4 Drone Autopilot
哔咔漫画window客户端,界面使用PySide2,已实现分类、搜索、收藏夹、下载、在线观看、waifu2x等功能。

picacomic-windows 哔咔漫画window客户端,界面使用PySide2,已实现分类、搜索、收藏夹、下载、在线观看等功能。 功能介绍 登陆分流,还原安卓端的三个分流入口 分类,搜索,排行,收藏夹使用同一的逻辑,滚轮下滑自动加载下一页,双击打开 漫画详情,章节列表和评论列表 下载功能,目

1.8k Dec 31, 2022
2D maze path solver visualizer implemented with python

2D maze path solver visualizer implemented with python

SS 14 Dec 21, 2022
Visualise Ansible execution time across playbooks, tasks, and hosts.

ansible-trace Visualise where time is spent in your Ansible playbooks: what tasks, and what hosts, so you can find where to optimise and decrease play

Mark Hansen 81 Dec 15, 2022
A python script to visualise explain plans as a graph using graphviz

README Needs to be improved Prerequisites Need to have graphiz installed on the machine. Refer to https://graphviz.readthedocs.io/en/stable/manual.htm

Edward Mallia 1 Sep 28, 2021
FURY - A software library for scientific visualization in Python

Free Unified Rendering in Python A software library for scientific visualization in Python. General Information • Key Features • Installation • How to

169 Dec 21, 2022
Visualize the training curve from the *.csv file (tensorboard format).

Training-Curve-Vis Visualize the training curve from the *.csv file (tensorboard format). Feature Custom labels Curve smoothing Support for multiple c

Luckky 7 Feb 23, 2022
Visualizations for machine learning datasets

Introduction The facets project contains two visualizations for understanding and analyzing machine learning datasets: Facets Overview and Facets Dive

PAIR code 7.1k Jan 07, 2023
Simple implementation of Self Organizing Maps (SOMs) with rectangular and hexagonal grid topologies

py-self-organizing-map Simple implementation of Self Organizing Maps (SOMs) with rectangular and hexagonal grid topologies. A SOM is a simple unsuperv

Jonas Grebe 1 Feb 10, 2022
Extensible, parallel implementations of t-SNE

openTSNE openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1], a popular dimensionality-reduction al

Pavlin Poličar 1.1k Jan 03, 2023
HiPlot makes understanding high dimensional data easy

HiPlot - High dimensional Interactive Plotting HiPlot is a lightweight interactive visualization tool to help AI researchers discover correlations and

Facebook Research 2.4k Jan 04, 2023
Info for The Great DataTas plot-a-thon

The Great DataTas plot-a-thon Datatas is organising a Data Visualisation competition: The Great DataTas plot-a-thon We will be using Tidy Tuesday data

2 Nov 21, 2021
HW 02 for CS40 - matplotlib practice

HW 02 for CS40 - matplotlib practice project instructions https://github.com/mikeizbicki/cmc-csci040/tree/2021fall/hw_02 Drake Lyric Analysis Bar Char

13 Oct 27, 2021
Material for dataviz course at university of Bordeaux

Material for dataviz course at university of Bordeaux

Nicolas P. Rougier 50 Jul 17, 2022
A Python wrapper of Neighbor Retrieval Visualizer (NeRV)

PyNeRV A Python wrapper of the dimensionality reduction algorithm Neighbor Retrieval Visualizer (NeRV) Compile Set up the paths in Makefile then make.

2 Aug 29, 2021
A custom qq-plot for two sample data comparision

QQ-Plot 2 Sample Just a gist to include the custom code to draw a qq-plot in python when dealing with a "two sample problem". This means when u try to

1 Dec 20, 2021
Insert SVGs into matplotlib

Insert SVGs into matplotlib

Andrew White 35 Dec 29, 2022
Sci palettes for matplotlib/seaborn

sci palettes for matplotlib/seaborn Installation python3 -m pip install sci-palettes Usage import seaborn as sns import matplotlib.pyplot as plt impor

Qingdong Su 2 Jun 07, 2022
A small tool to test and visualize protein embeddings and amino acid proportions.

polyprotein_stats A small tool to test and visualize protein embeddings and amino acid proportions. Currently deployed on streamlit.io. Given a set of

2 Jan 07, 2023
Color scales in Python for humans

colorlover Color scales for humans IPython notebook: https://plot.ly/ipython-notebooks/color-scales/ import colorlover as cl from IPython.display impo

Plotly 146 Sep 25, 2022
A simple Monte Carlo simulation using Python and matplotlib library

Monte Carlo python simulation Install linux dependencies sudo apt update sudo apt install build-essential \ software-properties-commo

Samuel Terra 2 Dec 13, 2021