A curated list of papers, code and resources pertaining to image composition

Overview

Awesome Image Composition Awesome

A curated list of resources including papers, datasets, and relevant links pertaining to image composition.

Contributing

Contributions are welcome. If you wish to contribute, feel free to send a pull request. If you have suggestions for new sections to be included, please raise an issue and discuss before sending a pull request.

Table of Contents

Surveys

  • Li Niu, Wenyan Cong, Liu Liu, Yan Hong, Bo Zhang, Jing Liang, Liqing Zhang: "Making Images Real Again: A Comprehensive Survey on Deep Image Composition." arXiv preprint arXiv:2106.14490 (2021). [arXiv]

Papers

Image blending

  • Huikai Wu, Shuai Zheng, Junge Zhang, Kaiqi Huang: "GP-GAN: Towards Realistic High-Resolution Image Blending." ACM MM (2019) [arXiv] [code]
  • Lingzhi Zhang, Tarmily Wen, Jianbo Shi: "Deep Image Blending." WACV (2020) [pdf] [arXiv] [code]

Image harmonization

  • Jun Ling, Han Xue, Li Song, Rong Xie, Xiao Gu: "Region-Aware Adaptive Instance Normalization for Image Harmonization." CVPR (2021) [pdf] [supp] [arXiv] [code].
  • Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng: "Intrinsic Image Harmonization." CVPR (2021) [pdf] [supp] [code].
  • Wenyan Cong, Li Niu, Jianfu Zhang, Jing Liang, Liqing Zhang: "BargainNet: Background-Guided Domain Translation for Image Harmonization." ICME (2021) [arXiv] [code].
  • Konstantin Sofiiuk, Polina Popenova, Anton Konushin: "Foreground-aware Semantic Representations for Image Harmonization." WACV (2021) [pdf] [supp] [arXiv] [code]
  • Guoqing Hao, Satoshi Iizuka, Kazuhiro Fukui: "Image Harmonization with Attention-based Deep Feature Modulation." BMVC (2020) [pdf] [supp] [code]
  • Wenyan Cong, Jianfu Zhang, Li Niu, Liu Liu, Zhixin Ling, Weiyuan Li, Liqing Zhang: "DoveNet: Deep Image Harmonization via Domain Verification." CVPR (2020) [pdf] [supp] [arXiv] [code].
  • Xiaodong Cun, Chi-Man Pun: "Improving the Harmony of the Composite Image by Spatial-Separated Attention Module." IEEE Trans. Image Process. 29: 4759-4771 (2020) [pdf] [arXiv] [code]
  • Yi-Hsuan Tsai, Xiaohui Shen, Zhe Lin, Kalyan Sunkavalli, Xin Lu, Ming-Hsuan Yang: "Deep Image Harmonization." CVPR (2017) [pdf] [supp] [arXiv] [code]

Shadow generation

  • Daquan Liu, Chengjiang Long, Hongpan Zhang, Hanning Yu, Xinzhi Dong, Chunxia Xiao: "ARshadowGAN: Shadow generative adversarial network for augmented reality in single light scenes." CVPR (2020) [pdf] [code].

  • Shuyang Zhang, Runze Liang, Miao Wang: "ShadowGAN: Shadow synthesis for virtual objects with conditional adversarial networks." Computational Visual Media (2019) [pdf].

  • Fangneng Zhan, Shijian Lu, Changgong Zhang, Feiying Ma, Xuansong Xie: "Adversarial Image Composition with Auxiliary Illumination." ACCV (2020) [pdf].

Object placement and spatial transformation

  • Lingzhi Zhang, Tarmily Wen, Jie Min, Jiancong Wang, David Han, Jianbo Shi: "Learning Object Placement by Inpainting for Compositional Data Augmentation" ECCV (2020) [pdf]

  • Samaneh Azadi, Deepak Pathak, Sayna Ebrahimi, Trevor Darrell: "Compositional GAN: Learning Image-Conditional Binary Composition" International Journal of Computer Vision (2020) [arXiv] [code]

  • Song-Hai Zhang, Zhengping Zhou, Bin Liu, Xi Dong, Peter Hall: "What and Where: A Context-based Recommendation System for Object Insertion" Computational Visual Media (2020) [arXiv]

  • Shashank Tripathi, Siddhartha Chandra, Amit Agrawal, Ambrish Tyagi, James M. Rehg, Visesh Chari: "Learning to Generate Synthetic Data via Compositing" CVPR (2019) [arXiv]

  • Haoshu Fang, Jianhua Sun, Runzhong Wang, Minghao Gou, Yonglu Li, Cewu Lu: "InstaBoost: Boosting Instance Segmentation via Probability Map Guided Copy-Pasting" ICCV (2019) [arXiv] [code]

  • Chen-Hsuan Lin, Ersin Yumer, Oliver Wang, Eli Shechtman, Simon Lucey: "ST-GAN: Spatial Transformer Generative Adversarial Networks for Image Compositing" CVPR (2018) [arXiv] [code]

  • Donghoon Lee, Sifei Liu, Jinwei Gu, Ming-Yu Liu, Ming-Hsuan Yang, Jan Kautz: "Context-Aware Synthesis and Placement of Object Instances" NeurIPS (2018) [arXiv] [code]

  • Fuwen Tan, Crispin Bernier, Benjamin Cohen, Vicente Ordonez, Connelly Barnes: "Where and Who? Automatic Semantic-Aware Person Composition" WACV (2018) [arXiv][code]

  • Tal Remez, Jonathan Huang, Matthew Brown: "learning to segment via cut-and-paste" ECCV (2018) [arXiv] [code]

Occlusion

  • Samaneh Azadi, Deepak Pathak, Sayna Ebrahimi, Trevor Darrell: "Compositional GAN: Learning Image-Conditional Binary Composition." IJCV (2020) [arXiv] [code]
  • Fangneng Zhan, Jiaxing Huang, Shijian Lu, "Hierarchy Composition GAN for High-fidelity Image Synthesis." Transactions on cybernetics (2021) [arXiv]

Datasets

  • iHarmony4 (image harmonization): It contains four subdatasets: HCOCO, HAdobe5k, HFlickr, Hday2night, with a total of 73,146 pairs of unharmonized images and harmonized images. [pdf] [link]
  • GMSDataset (image harmonization): It contains 183 images with image resolution of 1940*1440. It consists of 16 different objects and for each object, one source image and 11 target images in different background scenes and illumination conditions are captured. [pdf] [link] (access code: ekn2)
  • HVIDIT (image harmonization): A dataset built upon VIDIT (Virtual Image Dataset for Illumination Transfer) dataset for image harmonization. It contains 3007 images of 276 scenes for training and 329 images of 24 scenes for testing. [pdf] [link]
  • RHHarmony (image harmonization): A rendered image harmonization dataset, which contains 15000 ground-truth rendered images and has the potential to generate 135000 composite rendered images. [pdf] [link]
  • Shadow-AR (shadow generation): It contains 3,000 quintuples, Each quintuple consists of 5 images 640×480 resolution: a synthetic image without the virtual object shadow and its corresponding image containing the virtual object shadow, a mask of the virtual object, a labeled real-world shadow matting and its corresponding labeled occluder. [pdf] [link]
  • DESOBA (shadow generation): It contains 840 training images with totally 2,999 object-shadow pairs and 160 test images with totally 624 object-shadow pairs. [pdf] [link]
  • OPA (object placement): It contains 62,074 training images and 11,396 test images, in which the foregrounds/backgrounds in training set and test set have no overlap. The training (resp., test) set contains 21,351 (resp.,3,566) positive samples and 40,724 (resp., 7,830) negative samples. [pdf] [link]

Other resources

Owner
BCMI
Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.
BCMI
Generate text images for training deep learning ocr model

New version release:https://github.com/oh-my-ocr/text_renderer Text Renderer Generate text images for training deep learning OCR model (e.g. CRNN). Su

Qing 1.2k Jan 04, 2023
Captcha Recognition

The objective of this project is to recognize the target numbers in the captcha images correctly which would tell us how good or bad a captcha system has been built.

Mohit Kaushik 5 Feb 20, 2022
kaldi-asr/kaldi is the official location of the Kaldi project.

Kaldi Speech Recognition Toolkit To build the toolkit: see ./INSTALL. These instructions are valid for UNIX systems including various flavors of Linux

Kaldi 12.3k Jan 05, 2023
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 91 Nov 22, 2022
The Open Source Framework for Machine Vision

SimpleCV Quick Links: About Installation [Docker] (#docker) Ubuntu Virtual Environment Arch Linux Fedora MacOS Windows Raspberry Pi SimpleCV Shell Vid

Sight Machine 2.6k Dec 31, 2022
Dirty, ugly, and hopefully useful OCR of Facebook Papers docs released by Gizmodo

Quick and Dirty OCR of Facebook Papers Gizmodo has been working through the Facebook Papers and releasing the docs that they process and review. As lu

Bill Fitzgerald 2 Oct 28, 2021
✌️Using this you can control your PC/Laptop volume by Hand Gestures created with Python.

Hand Gesture Volume Controller ✋ Hand recognition 👆 Finger recognition 🔊 you can decrease and increase volume Demo Code Firstly I have created a Mod

Abbas Ataei 19 Nov 17, 2022
OCR engine for all the languages

Description kraken is a turn-key OCR system optimized for historical and non-Latin script material. kraken's main features are: Fully trainable layout

431 Jan 04, 2023
Distort a video using Seam Carving (video) and Vibrato effect (sound)

Distort videos Applies a Seam Carving algorithm (aka liquid rescale) on every frame of a video, and a vibrato effect on the audio to distort the video

AlexZeGamer 6 Dec 06, 2022
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
Steve Tu 71 Dec 30, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
Official implementation of Character Region Awareness for Text Detection (CRAFT)

CRAFT: Character-Region Awareness For Text detection Official Pytorch implementation of CRAFT text detector | Paper | Pretrained Model | Supplementary

Clova AI Research 2.5k Jan 03, 2023
Detecting Text in Natural Image with Connectionist Text Proposal Network (ECCV'16)

Detecting Text in Natural Image with Connectionist Text Proposal Network The codes are used for implementing CTPN for scene text detection, described

Tian Zhi 1.3k Dec 22, 2022
A pkg stiching around view images(4-6cameras) to generate bird's eye view.

AVP-BEV-OPEN Please check our new work AVP_SLAM_SIM A pkg stiching around view images(4-6cameras) to generate bird's eye view! View Demo · Report Bug

Xinliang Zhong 37 Dec 01, 2022
Msos searcher - A half-hearted attempt at finding a magic square of squares

MSOS searcher A half-hearted attempt at finding (or rather searching) a MSOS (Magic Square of Squares) in the spirit of the Parker Square. Running I r

Niels Mündler 1 Jan 02, 2022
A selectional auto-encoder approach for document image binarization

The code of this repository was used for the following publication. If you find this code useful please cite our paper: @article{Gallego2019, title =

Javier Gallego 89 Nov 18, 2022
基于Paddle框架的PSENet复现

PSENet-Paddle 基于Paddle框架的PSENet复现 本项目基于paddlepaddle框架复现PSENet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 AIStudio链接 参考项目: whai362-PSENet 环境配置 本项目

QuanHao Guo 4 Apr 24, 2022
The first open-source library that detects the font of a text in a image.

Typefont Typefont is an experimental library that detects the font of a text in a image. Usage Import the main function and invoke it like in the foll

Vasile Pește 1.6k Feb 24, 2022
A python scripts that uses 3 different feature extraction methods such as SIFT, SURF and ORB to find a book in a video clip and project trailer of a movie based on that book, on to it.

A python scripts that uses 3 different feature extraction methods such as SIFT, SURF and ORB to find a book in a video clip and project trailer of a movie based on that book, on to it.

tooraj taraz 3 Feb 10, 2022