Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding for Zero-Example Video Retrieval.

Overview

Dual Encoding for Video Retrieval by Text

Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding for Zero-Example Video Retrieval.

image

Table of Contents

Environments

  • Ubuntu 16.04
  • CUDA 10.1
  • Python 3.8
  • PyTorch 1.5.1

We used Anaconda to setup a deep learning workspace that supports PyTorch. Run the following script to install the required packages.

conda create --name ws_dual_py3 python=3.8
conda activate ws_dual_py3
git clone https://github.com/danieljf24/hybrid_space.git
cd hybrid_space
pip install -r requirements.txt
conda deactivate

Dual Encoding on MSRVTT10K

Required Data

Run the following script to download and extract MSR-VTT (msrvtt10k-resnext101_resnet152.tar.gz(4.3G)) dataset and a pre-trained word2vec (vec500flickr30m.tar.gz(3.0G). The data can also be downloaded from Baidu pan (url, password:p3p0) or Google drive (url). For more information about the dataset, please refer to here. The extracted data is placed in $HOME/VisualSearch/.

ROOTPATH=$HOME/VisualSearch
mkdir -p $ROOTPATH && cd $ROOTPATH

# download and extract dataset
wget http://8.210.46.84:8787/msrvtt10k-resnext101_resnet152.tar.gz
tar zxf msrvtt10k-resnext101_resnet152.tar.gz -C $ROOTPATH

# download and extract pre-trained word2vec
wget http://lixirong.net/data/w2vv-tmm2018/word2vec.tar.gz
tar zxf word2vec.tar.gz -C $ROOTPATH

Model Training and Evaluation

Run the following script to train and evaluate Dual Encoding network with hybrid space on the official partition of MSR-VTT. The video features are the concatenation of ResNeXt-101 and ResNet-152 features. The code of video feature extraction we used in the paper is available at here.

conda activate ws_dual_py3
./do_all.sh msrvtt10k hybrid resnext101-resnet152

Running the script will do the following things:

  1. Train Dual Encoding network with hybrid space and select a checkpoint that performs best on the validation set as the final model. Notice that we only save the best-performing checkpoint on the validation set to save disk space.
  2. Evaluate the final model on the test set. Note that the dataset has already included vocabulary and concept annotations. If you would like to generate vocabulary and concepts by yourself, run the script ./do_vocab_concept.sh msrvtt10k 1 $ROOTPATH.

If you would like to train Dual Encoding network with the latent space learning (Conference Version), please run the following scrip:

./do_all.sh msrvtt10k latent resnext101-resnet152 $ROOTPATH

To train the model on the Test1k-Miech partition and Test1k-Yu partition of MSR-VTT, please run the following scrip:

./do_all.sh msrvtt10kmiech hybrid resnext101-resnet152 $ROOTPATH
./do_all.sh msrvtt10kyu hybrid resnext101-resnet152 $ROOTPATH

Evaluation using Provided Checkpoints

The overview of pre-trained checkpoints on MSR-VTT is as follows.

Split Pre-trained Checkpoints
Official msrvtt10k_model_best.pth.tar(264M)
Test1k-Miech msrvtt10kmiech_model_best.pth.tar(267M)
Test1k-Yu msrvtt10kyu_model_best.pth.tar(267M)

Note that if you would like to evaluate using our trained checkpoints, please make sure to use the vocabulary and concept annotations that are provided in the msrvtt10k-resnext101_resnet152.tar.gz.

On the official split

Run the following script to download and evaluate our trained checkpoints on the official split of MSR-VTT. The trained checkpoints can also be downloaded from Baidu pan (url, password:p3p0).

MODELDIR=$HOME/VisualSearch/checkpoints
mkdir -p $MODELDIR

# download trained checkpoints
wegt -P $MODELDIR http://8.210.46.84:8787/checkpoints/msrvtt10k_model_best.pth.tar

# evaluate on the official split of MSR-VTT
CUDA_VISIBLE_DEVICES=0 python tester.py --testCollection msrvtt10k --logger_name $MODELDIR  --checkpoint_name msrvtt10k_model_best.pth.tar

On Test1k-Miech and Test1k-Yu splits

In order to evaluate on Test1k-Miech and Test1k-Yu splits, please run the following script.

MODELDIR=$HOME/VisualSearch/checkpoints

# download trained checkpoints on Test1k-Miech
wegt -P $MODELDIR http://8.210.46.84:8787/checkpoints/msrvtt10kmiech_model_best.pth.tar

# evaluate on Test1k-Miech of MSR-VTT
CUDA_VISIBLE_DEVICES=0 python tester.py --testCollection msrvtt10kmiech --logger_name $MODELDIR  --checkpoint_name msrvtt10kmiech_model_best.pth.tar
MODELDIR=$HOME/VisualSearch/checkpoints

# download trained checkpoints on Test1k-Yu
wegt -P $MODELDIR http://8.210.46.84:8787/checkpoints/msrvtt10kyu_model_best.pth.tar

# evaluate on Test1k-Yu of MSR-VTT
CUDA_VISIBLE_DEVICES=0 python tester.py --testCollection msrvtt10kyu --logger_name $MODELDIR  --checkpoint_name msrvtt10kyu_model_best.pth.tar

Expected Performance

The expected performance of Dual Encoding on MSR-VTT is as follows. Notice that due to random factors in SGD based training, the numbers differ slightly from those reported in the paper.

Split Text-to-Video Retrieval Video-to-Text Retrieval SumR
[email protected] [email protected] [email protected] MedR mAP [email protected] [email protected] [email protected] MedR mAP
Official 11.8 30.6 41.8 17 21.4 21.6 45.9 58.5 7 10.3 210.2
Test1k-Miech 22.7 50.2 63.1 5 35.6 24.7 52.3 64.2 5 37.2 277.2
Test1k-Yu 21.5 48.8 60.2 6 34.0 21.7 49.0 61.4 6 34.6 262.6

Dual Encoding on VATEX

Required Data

Download VATEX dataset (vatex-i3d.tar.gz(3.0G)) and a pre-trained word2vec (vec500flickr30m.tar.gz(3.0G)). The data can also be downloaded from Baidu pan (url, password:p3p0) or Google drive (url). For more information about the dataset, please refer to here. Please extract data into $HOME/VisualSearch/.

Model Training and Evaluation

Run the following script to train and evaluate Dual Encoding network with hybrid space on VATEX.

# download and extract dataset
wget http://8.210.46.84:8787/vatex-i3d.tar.gz
tar zxf vatex-i3d.tar.gz -C $ROOTPATH

./do_all.sh vatex hybrid i3d_kinetics $ROOTPATH

Expected Performance

Run the following script to download and evaluate our trained model (vatex_model_best.pth.tar(230M)) on VATEX.

MODELDIR=$HOME/VisualSearch/checkpoints

# download trained checkpoints
wegt -P $MODELDIR http://8.210.46.84:8787/checkpoints/vatex_model_best.pth.tar

CUDA_VISIBLE_DEVICES=0 python tester.py --testCollection vatex --logger_name $MODELDIR  --checkpoint_name vatex_model_best.pth.tar

The expected performance of Dual Encoding with hybrid space learning on MSR-VTT is as follows.

Split Text-to-Video Retrieval Video-to-Text Retrieval SumR
[email protected] [email protected] [email protected] MedR mAP [email protected] [email protected] [email protected] MedR mAP
VATEX 35.8 72.8 82.9 2 52.0 47.5 76.0 85.3 2 39.1 400.3

Dual Encoding on Ad-hoc Video Search (AVS)

Required Data

The following datasets are used for training, validation and testing: the joint collection of MSR-VTT and TGIF, tv2016train and IACC.3. For more information about these datasets, please refer to here.

Frame-level feature data

Please download the frame-level features from Baidu pan (url, password:qwlc). The filename of feature data are summarized as follows.

Datasets 2048-dim ResNeXt-101 2048-dim ResNet-152
MSR-VTT msrvtt10k_ResNext-101.tar.gz msrvtt10k_ResNet-152.tar.gz
TGIF tgif_ResNext-101.tar.gz tgif_ResNet-152.tar.gz
tv2016train tv2016train_ResNext-101.tar.gz tv2016train_ResNet-152.tar.gz
IACC.3 iacc.3_ResNext-101.tar.gz iacc.3_ResNet-152.tar.gz

Note if you have already download MSR-VTT data we provide above, you need not download msrvtt10k_ResNext-101.tar.gz and msrvtt10k_ResNet-152.tar.gz.

Sentence data

Please download the above data, and run the following scripts to extract them into $HOME/VisualSearch/.

ROOTPATH=$HOME/VisualSearch

# extract ResNext-101
tar zxf tgif_ResNext-101.tar.gz -C $ROOTPATH
tar zxf msrvtt10k_ResNext-101.tar.gz -C $ROOTPATH
tar zxf tv2016train_ResNext-101.tar.gz -C $ROOTPATH
tar zxf iacc.3_ResNext-101.tar.gz -C $ROOTPATH

# extract ResNet-152
tar zxf tgif_ResNet-152.tar.gz -C $ROOTPATH
tar zxf msrvtt10k_ResNet-152.tar -C $ROOTPATH
tar zxf tv2016train_ResNet-152.tar.gz -C $ROOTPATH
tar zxf iacc.3_ResNet-152.tar.gz -C $ROOTPATH

# combine feature of tgif and msrvtt10k
./do_combine_features.sh

Train Dual Encoding model from scratch

ROOTPATH=$HOME/VisualSearch
trainCollection=tgif-msrvtt10k
overwrite=0

# Generate a vocabulary on the training set
./util/do_get_vocab.sh $trainCollection $ROOTPATH $overwrite

# Generate concepts according to video captions
./util/do_get_tags.sh $trainCollection $ROOTPATH $overwrite

# Generate video frame info
visual_feature=resnext101-resnet152
./util/do_get_frameInfo.sh $trainCollection $visual_feature $ROOTPATH $overwrite

# training and testing
./do_all_avs.sh $ROOTPATH

How to run Dual Encoding on other datasets?

Our code supports dataset structure:

  • One-folder structure: train, validation and test subset are stored in a folder.
  • Multiple-folder structure: train, validation and test subset are stored in three folders respectively.

One-folder structure

Store the train, validation and test subset into a folder in the following structure.

${collection}
├── FeatureData
│   └── ${feature_name}
│       ├── feature.bin
│       ├── shape.txt
│       └── id.txt
└── TextData
    └── ${collection}train.caption.txt
    └── ${collection}val.caption.txt
    └── ${collection}test.caption.txt
  • FeatureData: video frame features. Using txt2bin.py to convert video frame feature in the required binary format.
  • ${collection}train.caption.txt: training caption data.
  • ${collection}val.caption.txt: validation caption data.
  • ${collection}test.caption.txt: test caption data. The file structure is as follows, in which the video and sent in the same line are relevant.
video_id_1#1 sentence_1
video_id_1#2 sentence_2
...
video_id_n#1 sentence_k
...

Please run the script to generate vocabulary and concepts:

./util/do_vocab_concept.sh $collection 0 $ROOTPATH

Run the following script to train and evaluate Dual Encoding on your own dataset:

./do_all.sh ${collection} hybrid ${feature_name} ${rootpath}

Multiple-folder structure

Store the training, validation and test subsets into three folders in the following structure respectively.

${subset_name}
├── FeatureData
│   └── ${feature_name}
│       ├── feature.bin
│       ├── shape.txt
│       └── id.txt
└── TextData
    └── ${subset_name}.caption.txt
  • FeatureData: video frame features.
  • ${dsubset_name}.caption.txt: caption data of corresponding subset.

You can run the following script to check whether the data is ready:

./do_format_check.sh ${train_set} ${val_set} ${test_set} ${rootpath} ${feature_name}

where train_set, val_set and test_set indicate the name of training, validation and test set, respectively, ${rootpath} denotes the path where datasets are saved and feature_name is the video frame feature name.

Please run the script to generate vocabulary and concepts:

./util/do_vocab_concept.sh ${train_set} 0 $ROOTPATH

If you pass the format check, use the following script to train and evaluate Dual Encoding on your own dataset:

./do_all_multifolder.sh ${train_set} ${val_set} ${test_set} hybrid ${feature_name} ${rootpath}

References

If you find the package useful, please consider citing our TPAMI'21 or CVPR'19 paper:

@article{dong2021dual,
  title={Dual Encoding for Video Retrieval by Text},
  author={Dong, Jianfeng and Li, Xirong and Xu, Chaoxi and Yang, Xun and Yang, Gang and Wang, Xun and Wang, Meng},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  doi = {10.1109/TPAMI.2021.3059295},
  year={2021}
}
@inproceedings{cvpr2019-dual-dong,
title = {Dual Encoding for Zero-Example Video Retrieval},
author = {Jianfeng Dong and Xirong Li and Chaoxi Xu and Shouling Ji and Yuan He and Gang Yang and Xun Wang},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2019},
}
Source code of RRPN ---- Arbitrary-Oriented Scene Text Detection via Rotation Proposals

Paper source Arbitrary-Oriented Scene Text Detection via Rotation Proposals https://arxiv.org/abs/1703.01086 News We update RRPN in pytorch 1.0! View

428 Nov 22, 2022
BNF Globalization Code (CVPR 2016)

Boundary Neural Fields Globalization This is the code for Boundary Neural Fields globalization method. The technical report of the method can be found

25 Apr 15, 2022
docstrum

Docstrum Algorithm Getting Started This repo is for developing a Docstrum algorithm presented by O’Gorman (1993). Disclaimer This source code is built

Chulwoo Mike Pack 54 Dec 13, 2022
This tool will help you convert your text to handwriting xD

So your teacher asked you to upload written assignments? Hate writing assigments? This tool will help you convert your text to handwriting xD

Saurabh Daware 4.2k Jan 07, 2023
A python screen recorder for low-end computers, provides high quality video output.

RecorderX - v1.0 A screen recorder made in Python with the help of OpenCv, it has ability to record your screen in high quality. No matter what your P

Priyanshu Jindal 4 Nov 10, 2021
OCR of Chicago 1909 Renumbering Plan

Requirements: Python 3 (probably at least 3.4) pipenv (pip3 install pipenv) tesseract (brew install tesseract, at least if you have a mac and homebrew

ted whalen 2 Nov 21, 2021
1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge

SIIM-COVID19-Detection Source code of the 1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge. 1.INSTALLATION Ubuntu 18.04.5 LTS CUD

Nguyen Ba Dung 170 Dec 21, 2022
Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Handwritten Text Recognition with TensorFlow Update 2021: more robust model, faster dataloader, word beam search decoder also available for Windows Up

Harald Scheidl 1.5k Jan 07, 2023
Apply different text recognition services to images of handwritten documents.

Handprint The Handwritten Page Recognition Test is a command-line program that invokes HTR (handwritten text recognition) services on images of docume

Caltech Library 117 Jan 02, 2023
Document Layout Analysis

Eynollah Document Layout Analysis Introduction This tool performs document layout analysis (segmentation) from image data and returns the results as P

QURATOR-SPK 198 Dec 29, 2022
Convert scans of handwritten notes to beautiful, compact PDFs

Convert scans of handwritten notes to beautiful, compact PDFs

Matt Zucker 4.8k Jan 01, 2023
An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Oriented Scene Text Detection

InceptText-Tensorflow An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Orien

GeorgeJoe 115 Dec 12, 2022
PianoVisuals - Create background videos synced with piano music using opencv

Steps Record piano video Use Neural Network to do body segmentation (video matti

Solbiati Alessandro 4 Jan 24, 2022
Ackermann Line Follower Robot Simulation.

Ackermann Line Follower Robot This is a simulation of a line follower robot that works with steering control based on Stanley: The Robot That Won the

Lucas Mazzetto 2 Apr 16, 2022
Image Recognition Model Generator

Takes a user-inputted query and generates a machine learning image recognition model that determines if an inputted image is or isn't their query

Christopher Oka 1 Jan 13, 2022
Simple app for visual editing of Page XML files

Name nw-page-editor - Simple app for visual editing of Page XML files. Version: 2021.02.22 Description nw-page-editor is an application for viewing/ed

Mauricio Villegas 27 Jun 20, 2022
Some codes from PyImageSearch course's and external projects.

👨‍💻 Some codes and projects 👨‍💻 💡 Technologies 📜 Projects 📍 Chrome Dinosaur Controller 📦 Script 📍 Coins Counter 📦 Script 🤓 Author Lucas Biv

Lucas Bivar 25 Oct 24, 2021
🔎 Like Chardet. 🚀 Package for encoding & language detection. Charset detection.

Charset Detection, for Everyone 👋 The Real First Universal Charset Detector A library that helps you read text from an unknown charset encoding. Moti

TAHRI Ahmed R. 332 Dec 31, 2022
OCR powered screen-capture tool to capture information instead of images

NormCap OCR powered screen-capture tool to capture information instead of images. Links: Repo | PyPi | Releases | Changelog | FAQs Content: Quickstart

575 Dec 31, 2022
Implementation of our paper 'PixelLink: Detecting Scene Text via Instance Segmentation' in AAAI2018

Code for the AAAI18 paper PixelLink: Detecting Scene Text via Instance Segmentation, by Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai. Contributions

758 Dec 22, 2022