Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding for Zero-Example Video Retrieval.

Overview

Dual Encoding for Video Retrieval by Text

Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding for Zero-Example Video Retrieval.

image

Table of Contents

Environments

  • Ubuntu 16.04
  • CUDA 10.1
  • Python 3.8
  • PyTorch 1.5.1

We used Anaconda to setup a deep learning workspace that supports PyTorch. Run the following script to install the required packages.

conda create --name ws_dual_py3 python=3.8
conda activate ws_dual_py3
git clone https://github.com/danieljf24/hybrid_space.git
cd hybrid_space
pip install -r requirements.txt
conda deactivate

Dual Encoding on MSRVTT10K

Required Data

Run the following script to download and extract MSR-VTT (msrvtt10k-resnext101_resnet152.tar.gz(4.3G)) dataset and a pre-trained word2vec (vec500flickr30m.tar.gz(3.0G). The data can also be downloaded from Baidu pan (url, password:p3p0) or Google drive (url). For more information about the dataset, please refer to here. The extracted data is placed in $HOME/VisualSearch/.

ROOTPATH=$HOME/VisualSearch
mkdir -p $ROOTPATH && cd $ROOTPATH

# download and extract dataset
wget http://8.210.46.84:8787/msrvtt10k-resnext101_resnet152.tar.gz
tar zxf msrvtt10k-resnext101_resnet152.tar.gz -C $ROOTPATH

# download and extract pre-trained word2vec
wget http://lixirong.net/data/w2vv-tmm2018/word2vec.tar.gz
tar zxf word2vec.tar.gz -C $ROOTPATH

Model Training and Evaluation

Run the following script to train and evaluate Dual Encoding network with hybrid space on the official partition of MSR-VTT. The video features are the concatenation of ResNeXt-101 and ResNet-152 features. The code of video feature extraction we used in the paper is available at here.

conda activate ws_dual_py3
./do_all.sh msrvtt10k hybrid resnext101-resnet152

Running the script will do the following things:

  1. Train Dual Encoding network with hybrid space and select a checkpoint that performs best on the validation set as the final model. Notice that we only save the best-performing checkpoint on the validation set to save disk space.
  2. Evaluate the final model on the test set. Note that the dataset has already included vocabulary and concept annotations. If you would like to generate vocabulary and concepts by yourself, run the script ./do_vocab_concept.sh msrvtt10k 1 $ROOTPATH.

If you would like to train Dual Encoding network with the latent space learning (Conference Version), please run the following scrip:

./do_all.sh msrvtt10k latent resnext101-resnet152 $ROOTPATH

To train the model on the Test1k-Miech partition and Test1k-Yu partition of MSR-VTT, please run the following scrip:

./do_all.sh msrvtt10kmiech hybrid resnext101-resnet152 $ROOTPATH
./do_all.sh msrvtt10kyu hybrid resnext101-resnet152 $ROOTPATH

Evaluation using Provided Checkpoints

The overview of pre-trained checkpoints on MSR-VTT is as follows.

Split Pre-trained Checkpoints
Official msrvtt10k_model_best.pth.tar(264M)
Test1k-Miech msrvtt10kmiech_model_best.pth.tar(267M)
Test1k-Yu msrvtt10kyu_model_best.pth.tar(267M)

Note that if you would like to evaluate using our trained checkpoints, please make sure to use the vocabulary and concept annotations that are provided in the msrvtt10k-resnext101_resnet152.tar.gz.

On the official split

Run the following script to download and evaluate our trained checkpoints on the official split of MSR-VTT. The trained checkpoints can also be downloaded from Baidu pan (url, password:p3p0).

MODELDIR=$HOME/VisualSearch/checkpoints
mkdir -p $MODELDIR

# download trained checkpoints
wegt -P $MODELDIR http://8.210.46.84:8787/checkpoints/msrvtt10k_model_best.pth.tar

# evaluate on the official split of MSR-VTT
CUDA_VISIBLE_DEVICES=0 python tester.py --testCollection msrvtt10k --logger_name $MODELDIR  --checkpoint_name msrvtt10k_model_best.pth.tar

On Test1k-Miech and Test1k-Yu splits

In order to evaluate on Test1k-Miech and Test1k-Yu splits, please run the following script.

MODELDIR=$HOME/VisualSearch/checkpoints

# download trained checkpoints on Test1k-Miech
wegt -P $MODELDIR http://8.210.46.84:8787/checkpoints/msrvtt10kmiech_model_best.pth.tar

# evaluate on Test1k-Miech of MSR-VTT
CUDA_VISIBLE_DEVICES=0 python tester.py --testCollection msrvtt10kmiech --logger_name $MODELDIR  --checkpoint_name msrvtt10kmiech_model_best.pth.tar
MODELDIR=$HOME/VisualSearch/checkpoints

# download trained checkpoints on Test1k-Yu
wegt -P $MODELDIR http://8.210.46.84:8787/checkpoints/msrvtt10kyu_model_best.pth.tar

# evaluate on Test1k-Yu of MSR-VTT
CUDA_VISIBLE_DEVICES=0 python tester.py --testCollection msrvtt10kyu --logger_name $MODELDIR  --checkpoint_name msrvtt10kyu_model_best.pth.tar

Expected Performance

The expected performance of Dual Encoding on MSR-VTT is as follows. Notice that due to random factors in SGD based training, the numbers differ slightly from those reported in the paper.

Split Text-to-Video Retrieval Video-to-Text Retrieval SumR
[email protected] [email protected] [email protected] MedR mAP [email protected] [email protected] [email protected] MedR mAP
Official 11.8 30.6 41.8 17 21.4 21.6 45.9 58.5 7 10.3 210.2
Test1k-Miech 22.7 50.2 63.1 5 35.6 24.7 52.3 64.2 5 37.2 277.2
Test1k-Yu 21.5 48.8 60.2 6 34.0 21.7 49.0 61.4 6 34.6 262.6

Dual Encoding on VATEX

Required Data

Download VATEX dataset (vatex-i3d.tar.gz(3.0G)) and a pre-trained word2vec (vec500flickr30m.tar.gz(3.0G)). The data can also be downloaded from Baidu pan (url, password:p3p0) or Google drive (url). For more information about the dataset, please refer to here. Please extract data into $HOME/VisualSearch/.

Model Training and Evaluation

Run the following script to train and evaluate Dual Encoding network with hybrid space on VATEX.

# download and extract dataset
wget http://8.210.46.84:8787/vatex-i3d.tar.gz
tar zxf vatex-i3d.tar.gz -C $ROOTPATH

./do_all.sh vatex hybrid i3d_kinetics $ROOTPATH

Expected Performance

Run the following script to download and evaluate our trained model (vatex_model_best.pth.tar(230M)) on VATEX.

MODELDIR=$HOME/VisualSearch/checkpoints

# download trained checkpoints
wegt -P $MODELDIR http://8.210.46.84:8787/checkpoints/vatex_model_best.pth.tar

CUDA_VISIBLE_DEVICES=0 python tester.py --testCollection vatex --logger_name $MODELDIR  --checkpoint_name vatex_model_best.pth.tar

The expected performance of Dual Encoding with hybrid space learning on MSR-VTT is as follows.

Split Text-to-Video Retrieval Video-to-Text Retrieval SumR
[email protected] [email protected] [email protected] MedR mAP [email protected] [email protected] [email protected] MedR mAP
VATEX 35.8 72.8 82.9 2 52.0 47.5 76.0 85.3 2 39.1 400.3

Dual Encoding on Ad-hoc Video Search (AVS)

Required Data

The following datasets are used for training, validation and testing: the joint collection of MSR-VTT and TGIF, tv2016train and IACC.3. For more information about these datasets, please refer to here.

Frame-level feature data

Please download the frame-level features from Baidu pan (url, password:qwlc). The filename of feature data are summarized as follows.

Datasets 2048-dim ResNeXt-101 2048-dim ResNet-152
MSR-VTT msrvtt10k_ResNext-101.tar.gz msrvtt10k_ResNet-152.tar.gz
TGIF tgif_ResNext-101.tar.gz tgif_ResNet-152.tar.gz
tv2016train tv2016train_ResNext-101.tar.gz tv2016train_ResNet-152.tar.gz
IACC.3 iacc.3_ResNext-101.tar.gz iacc.3_ResNet-152.tar.gz

Note if you have already download MSR-VTT data we provide above, you need not download msrvtt10k_ResNext-101.tar.gz and msrvtt10k_ResNet-152.tar.gz.

Sentence data

Please download the above data, and run the following scripts to extract them into $HOME/VisualSearch/.

ROOTPATH=$HOME/VisualSearch

# extract ResNext-101
tar zxf tgif_ResNext-101.tar.gz -C $ROOTPATH
tar zxf msrvtt10k_ResNext-101.tar.gz -C $ROOTPATH
tar zxf tv2016train_ResNext-101.tar.gz -C $ROOTPATH
tar zxf iacc.3_ResNext-101.tar.gz -C $ROOTPATH

# extract ResNet-152
tar zxf tgif_ResNet-152.tar.gz -C $ROOTPATH
tar zxf msrvtt10k_ResNet-152.tar -C $ROOTPATH
tar zxf tv2016train_ResNet-152.tar.gz -C $ROOTPATH
tar zxf iacc.3_ResNet-152.tar.gz -C $ROOTPATH

# combine feature of tgif and msrvtt10k
./do_combine_features.sh

Train Dual Encoding model from scratch

ROOTPATH=$HOME/VisualSearch
trainCollection=tgif-msrvtt10k
overwrite=0

# Generate a vocabulary on the training set
./util/do_get_vocab.sh $trainCollection $ROOTPATH $overwrite

# Generate concepts according to video captions
./util/do_get_tags.sh $trainCollection $ROOTPATH $overwrite

# Generate video frame info
visual_feature=resnext101-resnet152
./util/do_get_frameInfo.sh $trainCollection $visual_feature $ROOTPATH $overwrite

# training and testing
./do_all_avs.sh $ROOTPATH

How to run Dual Encoding on other datasets?

Our code supports dataset structure:

  • One-folder structure: train, validation and test subset are stored in a folder.
  • Multiple-folder structure: train, validation and test subset are stored in three folders respectively.

One-folder structure

Store the train, validation and test subset into a folder in the following structure.

${collection}
├── FeatureData
│   └── ${feature_name}
│       ├── feature.bin
│       ├── shape.txt
│       └── id.txt
└── TextData
    └── ${collection}train.caption.txt
    └── ${collection}val.caption.txt
    └── ${collection}test.caption.txt
  • FeatureData: video frame features. Using txt2bin.py to convert video frame feature in the required binary format.
  • ${collection}train.caption.txt: training caption data.
  • ${collection}val.caption.txt: validation caption data.
  • ${collection}test.caption.txt: test caption data. The file structure is as follows, in which the video and sent in the same line are relevant.
video_id_1#1 sentence_1
video_id_1#2 sentence_2
...
video_id_n#1 sentence_k
...

Please run the script to generate vocabulary and concepts:

./util/do_vocab_concept.sh $collection 0 $ROOTPATH

Run the following script to train and evaluate Dual Encoding on your own dataset:

./do_all.sh ${collection} hybrid ${feature_name} ${rootpath}

Multiple-folder structure

Store the training, validation and test subsets into three folders in the following structure respectively.

${subset_name}
├── FeatureData
│   └── ${feature_name}
│       ├── feature.bin
│       ├── shape.txt
│       └── id.txt
└── TextData
    └── ${subset_name}.caption.txt
  • FeatureData: video frame features.
  • ${dsubset_name}.caption.txt: caption data of corresponding subset.

You can run the following script to check whether the data is ready:

./do_format_check.sh ${train_set} ${val_set} ${test_set} ${rootpath} ${feature_name}

where train_set, val_set and test_set indicate the name of training, validation and test set, respectively, ${rootpath} denotes the path where datasets are saved and feature_name is the video frame feature name.

Please run the script to generate vocabulary and concepts:

./util/do_vocab_concept.sh ${train_set} 0 $ROOTPATH

If you pass the format check, use the following script to train and evaluate Dual Encoding on your own dataset:

./do_all_multifolder.sh ${train_set} ${val_set} ${test_set} hybrid ${feature_name} ${rootpath}

References

If you find the package useful, please consider citing our TPAMI'21 or CVPR'19 paper:

@article{dong2021dual,
  title={Dual Encoding for Video Retrieval by Text},
  author={Dong, Jianfeng and Li, Xirong and Xu, Chaoxi and Yang, Xun and Yang, Gang and Wang, Xun and Wang, Meng},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  doi = {10.1109/TPAMI.2021.3059295},
  year={2021}
}
@inproceedings{cvpr2019-dual-dong,
title = {Dual Encoding for Zero-Example Video Retrieval},
author = {Jianfeng Dong and Xirong Li and Chaoxi Xu and Shouling Ji and Yuan He and Gang Yang and Xun Wang},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2019},
}
Controlling Volume by Hand Gestures

This program allows the user to control the volume of their device with specific hand gestures involving their thumb and index finger!

Riddhi Bajaj 1 Nov 11, 2021
Color Picker and Color Detection tool for METR4202

METR4202 Color Detection Help This is sample code that can be used for the METR4202 project demo. There are two files provided, both running on Python

Miguel Valencia 1 Oct 23, 2021
([email protected]) Boosting Co-teaching with Compression Regularization for Label Noise

Nested-Co-teaching ([email protected]) Pytorch implementation of paper "Boosting Co-tea

YINGYI CHEN 41 Jan 03, 2023
Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)

English | 简体中文 Introduction PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and a

27.5k Jan 08, 2023
Convolutional Recurrent Neural Network (CRNN) for image-based sequence recognition.

Convolutional Recurrent Neural Network This software implements the Convolutional Recurrent Neural Network (CRNN), a combination of CNN, RNN and CTC l

Baoguang Shi 2k Dec 31, 2022
Python Computer Vision from Scratch

This repository explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both f

Milaan Parmar / Милан пармар / _米兰 帕尔马 221 Dec 26, 2022
A simple QR-Code Reader in Python

A simple QR-Code Reader written in Python, that copies the content of a QR-Code directly into the copy clipboard.

Eric 1 Oct 28, 2021
✌️Using this you can control your PC/Laptop volume by Hand Gestures created with Python.

Hand Gesture Volume Controller ✋ Hand recognition 👆 Finger recognition 🔊 you can decrease and increase volume Demo Code Firstly I have created a Mod

Abbas Ataei 19 Nov 17, 2022
The CIS OCR PostCorrectionTool

The CIS OCR Post Correction Tool PoCoTo Source code for the Java-based PoCoTo client enabling fast interactive batch corrections of complete OCR error

CIS OCR Group 36 Dec 15, 2022
A simple OCR API server, seriously easy to be deployed by Docker, on Heroku as well

ocrserver Simple OCR server, as a small working sample for gosseract. Try now here https://ocr-example.herokuapp.com/, and deploy your own now. Deploy

Hiromu OCHIAI 541 Dec 28, 2022
Create single line SVG illustrations from your pictures

Create single line SVG illustrations from your pictures

Javier Bórquez 686 Dec 26, 2022
Forked from argman/EAST for the ICPR MTWI 2018 CHALLENGE

EAST_ICPR: EAST for ICPR MTWI 2018 CHALLENGE Introduction This is a repository forked from argman/EAST for the ICPR MTWI 2018 CHALLENGE. Origin Reposi

Haozheng Li 157 Aug 23, 2022
BoxToolBox is a simple python application built around the openCV library

BoxToolBox is a simple python application built around the openCV library. It is not a full featured application to guide you through the w

František Horínek 1 Nov 12, 2021
A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database.

A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database. The structure, shape and proportions of the faces are comp

Pavankumar Khot 4 Mar 19, 2022
This is a GUI program which consist of 4 OpenCV projects

Tkinter-OpenCV Project Using Tkinter, Opencv, Mediapipe This is a python GUI program using Tkinter which consist of 4 OpenCV projects 1. Finger Counte

Arya Bagde 3 Feb 22, 2022
python ocr using tesseract/ with EAST opencv detector

pytextractor python ocr using tesseract/ with EAST opencv text detector Uses the EAST opencv detector defined here with pytesseract to extract text(de

Danny Crasto 38 Dec 05, 2022
原神风花节自动弹琴辅助

GenshinAutoPlayBalladsofBreeze 原神风花节自动弹琴辅助(已适配1920*1080分辨率) 本程序基于opencv图像识别技术,不存在任何封号。 因为正确率取决于你的cpu性能,10900k都不一定全对。 由于图像识别存在误差,根本无法确定出错时间。更不用说被检测到了。

晓轩 20 Oct 27, 2022
This tool will help you convert your text to handwriting xD

So your teacher asked you to upload written assignments? Hate writing assigments? This tool will help you convert your text to handwriting xD

Saurabh Daware 4.2k Jan 07, 2023
Pre-Recognize Library - library with algorithms for improving OCR quality.

PRLib - Pre-Recognition Library. The main aim of the library - prepare image for recogntion. Image processing can really help to improve recognition q

Alex 80 Dec 30, 2022
A curated list of papers and resources for scene text detection and recognition

Awesome Scene Text A curated list of papers and resources for scene text detection and recognition The year when a paper was first published, includin

Jan Zdenek 43 Mar 15, 2022