CTC segmentation python package

Overview

CTC segmentation

CTC segmentation can be used to find utterances alignments within large audio files.

Installation

  • With pip:
pip install ctc-segmentation
  • From the Arch Linux AUR as python-ctc-segmentation-git using your favourite AUR helper.

  • From source:

git clone https://github.com/lumaku/ctc-segmentation
cd ctc-segmentation
cythonize -3 ctc_segmentation/ctc_segmentation_dyn.pyx
python setup.py build
python setup.py install --optimize=1 --skip-build

Example Code

  1. prepare_text filters characters not in the dictionary, and generates the character matrix.
  2. ctc_segmentation computes character-wise alignments from CTC activations of an already trained CTC-based network.
  3. determine_utterance_segments converts char-wise alignments to utterance-wise alignments.
  4. In a post-processing step, segments may be filtered by their confidence value.

This code is from asr_align.py of the ESPnet toolkit:

from ctc_segmentation import ctc_segmentation
from ctc_segmentation import CtcSegmentationParameters
from ctc_segmentation import determine_utterance_segments
from ctc_segmentation import prepare_text

# ...

config = CtcSegmentationParameters()
char_list = train_args.char_list

for idx, name in enumerate(js.keys(), 1):
    logging.info("(%d/%d) Aligning " + name, idx, len(js.keys()))
    batch = [(name, js[name])]
    feat, label = load_inputs_and_targets(batch)
    feat = feat[0]
    with torch.no_grad():
        # Encode input frames
        enc_output = model.encode(torch.as_tensor(feat).to(device)).unsqueeze(0)
        # Apply ctc layer to obtain log character probabilities
        lpz = model.ctc.log_softmax(enc_output)[0].cpu().numpy()
    # Prepare the text for aligning
    ground_truth_mat, utt_begin_indices = prepare_text(
        config, text[name], char_list
    )
    # Align using CTC segmentation
    timings, char_probs, state_list = ctc_segmentation(
        config, lpz, ground_truth_mat
    )
    # Obtain list of utterances with time intervals and confidence score
    segments = determine_utterance_segments(
        config, utt_begin_indices, char_probs, timings, text[name]
    )
    # Write to "segments" file
    for i, boundary in enumerate(segments):
        utt_segment = (
            f"{segment_names[name][i]} {name} {boundary[0]:.2f}"
            f" {boundary[1]:.2f} {boundary[2]:.9f}\n"
        )
        args.output.write(utt_segment)

After the segments are written to a segments file, they can be filtered with the parameter min_confidence_score. This is minium confidence score in log space as described in the paper. Utterances with a low confidence score are discarded. This parameter may need adjustment depending on dataset, ASR model and language. For the german ASR model, a value of -1.5 worked very well, but for TEDlium, a lower value of about -5.0 seemed more practical.

awk -v ms=${min_confidence_score} '{ if ($5 > ms) {print} }' ${unfiltered} > ${filtered}

Parameters

There are several notable parameters to adjust the working of the algorithm:

  • min_window_size: Minimum window size considered for a single utterance. The current default value should be OK in most cases.

  • Localization: The character set is taken from the model dict, i.e., usually are generated with SentencePiece. An ASR model trained in the corresponding language and character set is needed. For asian languages, no changes to the CTC segmentation parameters should be necessary. One exception: If the character set contains any punctuation characters, "#", or the Greek char "ε", adapt the setting in an instance of CtcSegmentationParameters in segmentation.py.

  • CtcSegmentationParameters includes a blank character. Copy over the Blank character from the dictionary to the configuration, if in the model dictionary e.g. "<blank>" instead of the default "_" is used. If the Blank in the configuration and in the dictionary mismatch, the algorithm raises an IndexError at backtracking.

  • If replace_spaces_with_blanks is True, then spaces in the ground truth sequence are replaces by blanks. This option is enabled by default and improves compability with dictionaries with unknown space characters.

  • To align utterances with longer unkown audio sections between them, use blank_transition_cost_zero (default: False). With this option, the stay transition in the blank state is free. A transition to the next character is only consumed if the probability to switch is higher. In this way, more time steps can be skipped between utterances. Caution: in combination with replace_spaces_with_blanks == True, this may lead to misaligned segments.

Two parameters are needed to correctly map the frame indices to a time stamp in seconds:

  • subsampling_factor: If the encoder sub-samples its input, the number of frames at the CTC layer is reduced by this factor. A BLSTMP encoder with subsampling 1_2_2_1_1 has a subsampling factor of 4.
  • frame_duration_ms: This is the non-overlapping duration of a single frame in milliseconds (the inverse of frames per millisecond). Note: if fs is set, then frame_duration_ms is ignored.

But not all ASR systems have subsampling. If you want to directly use the sampling rate:

  1. For a given sample rate, say, 16kHz, set fs=16000.
  2. Then set the subsampling_factor to the number of sample points on a single CTC-encoded frame. In default ASR systems, this can be calculated from the hop length of the windowing times encoder subsampling factor. For example, if the hop length is 128, and the subsampling factor in the encoder is 4, then set subsampling_factor=512.

How it works

1. Forward propagation

Character probabilites from each time step are obtained from a CTC-based network. With these, transition probabilities are mapped into a trellis diagram. To account for preambles or unrelated segments in audio files, the transition cost are set to zero for the start-of-sentence or blank token.

Forward trellis

2. Backtracking

Starting from the time step with the highest probability for the last character, backtracking determines the most probable path of characters through all time steps.

Backward path

3. Confidence score

As this method generates a probability for each aligned character, a confidence score for each utterance can be derived. For example, if a word within an utterance is missing, this value is low.

Confidence score

The confidence score helps to detect and filter-out bad utterances.

Reference

The full paper can be found in the preprint https://arxiv.org/abs/2007.09127 or published at https://doi.org/10.1007/978-3-030-60276-5_27. To cite this work:

@InProceedings{ctcsegmentation,
author="K{\"u}rzinger, Ludwig
and Winkelbauer, Dominik
and Li, Lujun
and Watzel, Tobias
and Rigoll, Gerhard",
editor="Karpov, Alexey
and Potapova, Rodmonga",
title="CTC-Segmentation of Large Corpora for German End-to-End Speech Recognition",
booktitle="Speech and Computer",
year="2020",
publisher="Springer International Publishing",
address="Cham",
pages="267--278",
abstract="Recent end-to-end Automatic Speech Recognition (ASR) systems demonstrated the ability to outperform conventional hybrid DNN/HMM ASR. Aside from architectural improvements in those systems, those models grew in terms of depth, parameters and model capacity. However, these models also require more training data to achieve comparable performance.",
isbn="978-3-030-60276-5"
}
Owner
Ludwig Kürzinger
Ludwig Kürzinger
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

이상윤 64 Oct 19, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
Automatic differentiation with weighted finite-state transducers.

GTN: Automatic Differentiation with WFSTs Quickstart | Installation | Documentation What is GTN? GTN is a framework for automatic differentiation with

100 Dec 29, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
The repository contains source code and models to use PixelNet architecture used for various pixel-level tasks. More details can be accessed at .

PixelNet: Representation of the pixels, by the pixels, and for the pixels. We explore design principles for general pixel-level prediction problems, f

Aayush Bansal 196 Aug 10, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021) Kranti Kumar Parida, Siddharth Srivastava, Gaurav Sharma. We address the pr

Kranti Kumar Parida 33 Jun 27, 2022
This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution Network.

Lite-HRNet: A Lightweight High-Resolution Network Introduction This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution

HRNet 675 Dec 25, 2022
Unity Propagation in Bayesian Networks Handling Inconsistency via Unity Smoothing

This repository contains the scripts needed to generate the results from the paper Unity Propagation in Bayesian Networks Handling Inconsistency via U

0 Jan 19, 2022
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
Torch implementation of SegNet and deconvolutional network

Torch implementation of SegNet and deconvolutional network

Fedor Chervinskii 5 Jul 17, 2020
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022