git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

Related tags

Deep LearningFSCE
Overview

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021)

Language grade: Python This repo contains the implementation of our state-of-the-art fewshot object detector, described in our CVPR 2021 paper, FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding. FSCE is built upon the codebase FsDet v0.1, which released by an ICML 2020 paper Frustratingly Simple Few-Shot Object Detection.

FSCE Figure

Bibtex

@inproceedings{FSCEv1,
 author = {Sun, Bo and Li, Banghuai and Cai, Shengcai and Yuan, Ye and Zhang, Chi},
 title = {FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding},
 booktitle = {Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)},
 pages    = {TBD},
 month = {June},
 year = {2021}
}

Arxiv: https://arxiv.org/abs/2103.05950

Contact

If you have any questions, please contact Bo Sun (bos [at] usc.edu) or Banghuai Li(libanghuai [at] megvii.com)

Installation

FsDet is built on Detectron2. But you don't need to build detectron2 seperately as this codebase is self-contained. You can follow the instructions below to install the dependencies and build FsDet. FSCE functionalities are implemented as classand .py scripts in FsDet which therefore requires no extra build efforts.

Dependencies

  • Linux with Python >= 3.6
  • PyTorch >= 1.3
  • torchvision that matches the PyTorch installation
  • Dependencies: pip install -r requirements.txt
  • pycocotools: pip install cython; pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
  • fvcore: pip install 'git+https://github.com/facebookresearch/fvcore'
  • OpenCV, optional, needed by demo and visualization pip install opencv-python
  • GCC >= 4.9

Build

python setup.py build develop  # you might need sudo

Note: you may need to rebuild FsDet after reinstalling a different build of PyTorch.

Data preparation

We adopt the same benchmarks as in FsDet, including three datasets: PASCAL VOC, COCO and LVIS.

  • PASCAL VOC: We use the train/val sets of PASCAL VOC 2007+2012 for training and the test set of PASCAL VOC 2007 for evaluation. We randomly split the 20 object classes into 15 base classes and 5 novel classes, and we consider 3 random splits. The splits can be found in fsdet/data/datasets/builtin_meta.py.
  • COCO: We use COCO 2014 without COCO minival for training and the 5,000 images in COCO minival for testing. We use the 20 object classes that are the same with PASCAL VOC as novel classes and use the rest as base classes.
  • LVIS: We treat the frequent and common classes as the base classes and the rare categories as the novel classes.

The datasets and data splits are built-in, simply make sure the directory structure agrees with datasets/README.md to launch the program.

Code Structure

The code structure follows Detectron2 v0.1.* and fsdet.

  • configs: Configuration files (YAML) for train/test jobs.
  • datasets: Dataset files (see Data Preparation for more details)
  • fsdet
    • checkpoint: Checkpoint code.
    • config: Configuration code and default configurations.
    • data: Dataset code.
    • engine: Contains training and evaluation loops and hooks.
    • evaluation: Evaluation code for different datasets.
    • layers: Implementations of different layers used in models.
    • modeling: Code for models, including backbones, proposal networks, and prediction heads.
      • The majority of FSCE functionality are implemtended inmodeling/roi_heads/* , modeling/contrastive_loss.py, and modeling/utils.py
      • So one can first make sure FsDet v0.1 runs smoothly, and then refer to FSCE implementations and configurations.
    • solver: Scheduler and optimizer code.
    • structures: Data types, such as bounding boxes and image lists.
    • utils: Utility functions.
  • tools
    • train_net.py: Training script.
    • test_net.py: Testing script.
    • ckpt_surgery.py: Surgery on checkpoints.
    • run_experiments.py: Running experiments across many seeds.
    • aggregate_seeds.py: Aggregating results from many seeds.

Train & Inference

Training

We follow the eaact training procedure of FsDet and we use random initialization for novel weights. For a full description of training procedure, see here.

1. Stage 1: Training base detector.

python tools/train_net.py --num-gpus 8 \
        --config-file configs/PASCAL_VOC/base-training/R101_FPN_base_training_split1.yml

2. Random initialize weights for novel classes.

python tools/ckpt_surgery.py \
        --src1 checkpoints/voc/faster_rcnn/faster_rcnn_R_101_FPN_base1/model_final.pth \
        --method randinit \
        --save-dir checkpoints/voc/faster_rcnn/faster_rcnn_R_101_FPN_all1

This step will create a model_surgery.pth from model_final.pth.

Don't forget the --coco and --lvisoptions when work on the COCO and LVIS datasets, see ckpt_surgery.py for all arguments details.

3. Stage 2: Fine-tune for novel data.

python tools/train_net.py --num-gpus 8 \
        --config-file configs/PASCAL_VOC/split1/10shot_CL_IoU.yml \
        --opts MODEL.WEIGHTS WEIGHTS_PATH

Where WEIGHTS_PATH points to the model_surgery.pth generated from the previous step. Or you can specify it in the configuration yml.

Evaluation

To evaluate the trained models, run

python tools/test_net.py --num-gpus 8 \
        --config-file configs/PASCAL_VOC/split1/10shot_CL_IoU.yml \
        --eval-only

Or you can specify TEST.EVAL_PERIOD in the configuation yml to evaluate during training.

Multiple Runs

For ease of training and evaluation over multiple runs, fsdet provided several helpful scripts in tools/.

You can use tools/run_experiments.py to do the training and evaluation. For example, to experiment on 30 seeds of the first split of PascalVOC on all shots, run

python tools/run_experiments.py --num-gpus 8 \
        --shots 1 2 3 5 10 --seeds 0 30 --split 1

After training and evaluation, you can use tools/aggregate_seeds.py to aggregate the results over all the seeds to obtain one set of numbers. To aggregate the 3-shot results of the above command, run

python tools/aggregate_seeds.py --shots 3 --seeds 30 --split 1 \
        --print --plot
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
Contrastive Learning of Structured World Models

Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo

Thomas Kipf 371 Jan 06, 2023
Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and hand

6 Jul 08, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
Localizing Visual Sounds the Hard Way

Localizing-Visual-Sounds-the-Hard-Way Code and Dataset for "Localizing Visual Sounds the Hard Way". The repo contains code and our pre-trained model.

Honglie Chen 58 Dec 07, 2022
Rotation-Only Bundle Adjustment

ROBA: Rotation-Only Bundle Adjustment Paper, Video, Poster, Presentation, Supplementary Material In this repository, we provide the implementation of

Seong 51 Nov 29, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University

THU模式识别2021春 -- Jittor 医学图像分割 模型列表 本仓库收录了课程作业中同学们采用jittor框架实现的如下模型: UNet SegNet DeepLab V2 DANet EANet HarDNet及其改动HarDNet_alter PSPNet OCNet OCRNet DL

48 Dec 26, 2022
TensorFlow implementation of Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction)

Barlow-Twins-TF This repository implements Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction) in TensorFlow and demonstrat

Sayak Paul 36 Sep 14, 2022
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"

CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202

Lingbo Yang 38 Sep 22, 2021
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021