git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

Related tags

Deep LearningFSCE
Overview

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021)

Language grade: Python This repo contains the implementation of our state-of-the-art fewshot object detector, described in our CVPR 2021 paper, FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding. FSCE is built upon the codebase FsDet v0.1, which released by an ICML 2020 paper Frustratingly Simple Few-Shot Object Detection.

FSCE Figure

Bibtex

@inproceedings{FSCEv1,
 author = {Sun, Bo and Li, Banghuai and Cai, Shengcai and Yuan, Ye and Zhang, Chi},
 title = {FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding},
 booktitle = {Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)},
 pages    = {TBD},
 month = {June},
 year = {2021}
}

Arxiv: https://arxiv.org/abs/2103.05950

Contact

If you have any questions, please contact Bo Sun (bos [at] usc.edu) or Banghuai Li(libanghuai [at] megvii.com)

Installation

FsDet is built on Detectron2. But you don't need to build detectron2 seperately as this codebase is self-contained. You can follow the instructions below to install the dependencies and build FsDet. FSCE functionalities are implemented as classand .py scripts in FsDet which therefore requires no extra build efforts.

Dependencies

  • Linux with Python >= 3.6
  • PyTorch >= 1.3
  • torchvision that matches the PyTorch installation
  • Dependencies: pip install -r requirements.txt
  • pycocotools: pip install cython; pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
  • fvcore: pip install 'git+https://github.com/facebookresearch/fvcore'
  • OpenCV, optional, needed by demo and visualization pip install opencv-python
  • GCC >= 4.9

Build

python setup.py build develop  # you might need sudo

Note: you may need to rebuild FsDet after reinstalling a different build of PyTorch.

Data preparation

We adopt the same benchmarks as in FsDet, including three datasets: PASCAL VOC, COCO and LVIS.

  • PASCAL VOC: We use the train/val sets of PASCAL VOC 2007+2012 for training and the test set of PASCAL VOC 2007 for evaluation. We randomly split the 20 object classes into 15 base classes and 5 novel classes, and we consider 3 random splits. The splits can be found in fsdet/data/datasets/builtin_meta.py.
  • COCO: We use COCO 2014 without COCO minival for training and the 5,000 images in COCO minival for testing. We use the 20 object classes that are the same with PASCAL VOC as novel classes and use the rest as base classes.
  • LVIS: We treat the frequent and common classes as the base classes and the rare categories as the novel classes.

The datasets and data splits are built-in, simply make sure the directory structure agrees with datasets/README.md to launch the program.

Code Structure

The code structure follows Detectron2 v0.1.* and fsdet.

  • configs: Configuration files (YAML) for train/test jobs.
  • datasets: Dataset files (see Data Preparation for more details)
  • fsdet
    • checkpoint: Checkpoint code.
    • config: Configuration code and default configurations.
    • data: Dataset code.
    • engine: Contains training and evaluation loops and hooks.
    • evaluation: Evaluation code for different datasets.
    • layers: Implementations of different layers used in models.
    • modeling: Code for models, including backbones, proposal networks, and prediction heads.
      • The majority of FSCE functionality are implemtended inmodeling/roi_heads/* , modeling/contrastive_loss.py, and modeling/utils.py
      • So one can first make sure FsDet v0.1 runs smoothly, and then refer to FSCE implementations and configurations.
    • solver: Scheduler and optimizer code.
    • structures: Data types, such as bounding boxes and image lists.
    • utils: Utility functions.
  • tools
    • train_net.py: Training script.
    • test_net.py: Testing script.
    • ckpt_surgery.py: Surgery on checkpoints.
    • run_experiments.py: Running experiments across many seeds.
    • aggregate_seeds.py: Aggregating results from many seeds.

Train & Inference

Training

We follow the eaact training procedure of FsDet and we use random initialization for novel weights. For a full description of training procedure, see here.

1. Stage 1: Training base detector.

python tools/train_net.py --num-gpus 8 \
        --config-file configs/PASCAL_VOC/base-training/R101_FPN_base_training_split1.yml

2. Random initialize weights for novel classes.

python tools/ckpt_surgery.py \
        --src1 checkpoints/voc/faster_rcnn/faster_rcnn_R_101_FPN_base1/model_final.pth \
        --method randinit \
        --save-dir checkpoints/voc/faster_rcnn/faster_rcnn_R_101_FPN_all1

This step will create a model_surgery.pth from model_final.pth.

Don't forget the --coco and --lvisoptions when work on the COCO and LVIS datasets, see ckpt_surgery.py for all arguments details.

3. Stage 2: Fine-tune for novel data.

python tools/train_net.py --num-gpus 8 \
        --config-file configs/PASCAL_VOC/split1/10shot_CL_IoU.yml \
        --opts MODEL.WEIGHTS WEIGHTS_PATH

Where WEIGHTS_PATH points to the model_surgery.pth generated from the previous step. Or you can specify it in the configuration yml.

Evaluation

To evaluate the trained models, run

python tools/test_net.py --num-gpus 8 \
        --config-file configs/PASCAL_VOC/split1/10shot_CL_IoU.yml \
        --eval-only

Or you can specify TEST.EVAL_PERIOD in the configuation yml to evaluate during training.

Multiple Runs

For ease of training and evaluation over multiple runs, fsdet provided several helpful scripts in tools/.

You can use tools/run_experiments.py to do the training and evaluation. For example, to experiment on 30 seeds of the first split of PascalVOC on all shots, run

python tools/run_experiments.py --num-gpus 8 \
        --shots 1 2 3 5 10 --seeds 0 30 --split 1

After training and evaluation, you can use tools/aggregate_seeds.py to aggregate the results over all the seeds to obtain one set of numbers. To aggregate the 3-shot results of the above command, run

python tools/aggregate_seeds.py --shots 3 --seeds 30 --split 1 \
        --print --plot
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

YifanXu 53 Dec 05, 2022
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
Happywhale - Whale and Dolphin Identification Silver🥈 Solution (26/1588)

Kaggle-Happywhale Happywhale - Whale and Dolphin Identification Silver 🥈 Solution (26/1588) 竞赛方案思路 图像数据预处理-标志性特征图片裁剪:首先根据开源的标注数据训练YOLOv5x6目标检测模型,将训练集

Franxx 20 Nov 14, 2022
Official implementation of YOGO for Point-Cloud Processing

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module By Chenfeng Xu, Bohan Zhai, Bichen Wu, T

Chenfeng Xu 67 Dec 20, 2022
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

250 Jan 08, 2023
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
Lua-parser-lark - An out-of-box Lua parser written in Lark

An out-of-box Lua parser written in Lark Such parser handles a relaxed version o

Taine Zhao 2 Jul 19, 2022
code for Grapadora research paper experimentation

Road feature embedding selection method Code for research paper experimentation Abstract Traffic forecasting models rely on data that needs to be sens

Eric López Manibardo 0 May 26, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022