Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

Overview

DEFT

DEFT: Detection Embeddings for Tracking

DEFT: Detection Embeddings for Tracking,
Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara
arXiv technical report (arXiv 2102.02267)

@article{Chaabane2021deft,
  title={DEFT: Detection Embeddings for Tracking},
  author={Chaabane, Mohamed and Zhang, Peter and Beveridge, Ross and O'Hara, Stephen},
  journal={arXiv preprint arXiv:2102.02267},
  year={2021}
}

Contact: [email protected]. Any questions or discussion are welcome!

Abstract

Most modern multiple object tracking (MOT) systems follow the tracking-by-detection paradigm, consisting of a detector followed by a method for associating detections into tracks. There is a long history in tracking of combining motion and appearance features to provide robustness to occlusions and other challenges, but typically this comes with the trade-off of a more complex and slower implementation. Recent successes on popular 2D tracking benchmarks indicate that top-scores can be achieved using a state-of-the-art detector and relatively simple associations relying on single-frame spatial offsets -- notably outperforming contemporary methods that leverage learned appearance features to help re-identify lost tracks. In this paper, we propose an efficient joint detection and tracking model named DEFT, or Detection Embeddings for Tracking. Our approach relies on an appearance-based object matching network jointly-learned with an underlying object detection network. An LSTM is also added to capture motion constraints. DEFT has comparable accuracy and speed to the top methods on 2D online tracking leaderboards while having significant advantages in robustness when applied to more challenging tracking data. DEFT raises the bar on the nuScenes monocular 3D tracking challenge, more than doubling the performance of the previous top method.

Video examples on benchmarks test sets

Tracking performance

Results on MOT challenge test set

Dataset MOTA MOTP IDF1 IDS
MOT16 (Public) 61.7 78.3 60.2 768
MOT16 (Private) 68.03 78.71 66.39 925
MOT17 (Public) 60.4 78.1 59.7 2581
MOT17 (Private) 66.6 78.83 65.42 2823

The results are obtained on the MOT challenge evaluation server.

Results on 2D Vehicle Tracking on KITTI test set

Dataset MOTA MOTP MT ML IDS
KITTI 88.95 84.55 84.77 1.85 343

Tthe results are obtained on the KITTI challenge evaluation server.

Results on 3D Tracking on nuScenes test set

Dataset AMOTA MOTAR MOTA
nuScenes 17.7 48.4 15.6

Tthe results are obtained on the nuScenes challenge evaluation server.

Installation

  • Clone this repo, and run the following commands.
  • create a new conda environment and activate the environment.
git clone [email protected]:MedChaabane/DEFT.git
cd DEFT
conda create -y -n DEFT python=3.7
conda activate DEFT
  • Install PyTorch and the dependencies.
conda install -y pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch
pip install -r requirements.txt  
pip install cython; pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
cd src/lib/model/networks/
git clone https://github.com/CharlesShang/DCNv2
cd DCNv2
./make.sh

Datsets Preparation

We use similar datasets preparation like in CenterTrack framework

MOT 2017

  • Run the dataset preprocessing script.
cd src/tools/
sh get_mot_17.sh
  • The output data structure should be:
  ${DEFT_ROOT}
  |-- data
  `-- |-- mot17
      `-- |--- train
          |   |--- MOT17-02-FRCNN
          |   |    |--- img1
          |   |    |--- gt
          |   |    |   |--- gt.txt
          |   |    |   |--- gt_train_half.txt
          |   |    |   |--- gt_val_half.txt
          |   |    |--- det
          |   |    |   |--- det.txt
          |   |    |   |--- det_train_half.txt
          |   |    |   |--- det_val_half.txt
          |   |--- ...
          |--- test
          |   |--- MOT17-01-FRCNN
          |---|--- ...
          `---| annotations
              |--- train_half.json
              |--- val_half.json
              |--- train.json
              `--- test.json

KITTI Tracking

  ${DEFT_ROOT}
  |-- data
  `-- |-- kitti_tracking
      `-- |-- data_tracking_image_2
          |   |-- training
          |   |-- |-- image_02
          |   |-- |-- |-- 0000
          |   |-- |-- |-- ...
          |-- |-- testing
          |-- label_02
          |   |-- 0000.txt
          |   |-- ...
          `-- data_tracking_calib
  • Run the dataset preprocessing script.
cd src/tools/
sh get_kitti_tracking.sh
  • The resulting data structure should look like:
  ${DEFT_ROOT}
  |-- data
  `-- |-- kitti_tracking
      `-- |-- data_tracking_image_2
          |   |-- training
          |   |   |-- image_02
          |   |   |   |-- 0000
          |   |   |   |-- ...
          |-- |-- testing
          |-- label_02
          |   |-- 0000.txt
          |   |-- ...
          |-- data_tracking_calib
          |-- label_02_val_half
          |   |-- 0000.txt
          |   |-- ...
          |-- label_02_train_half
          |   |-- 0000.txt
          |   |-- ...
          `-- annotations
              |-- tracking_train.json
              |-- tracking_test.json
              |-- tracking_train_half.json
              `-- tracking_val_half.json

nuScenes Tracking

  • Download the dataset from nuScenes website. You only need to download the "Keyframe blobs", and only need the images data. You also need to download the maps and all metadata.
  • Unzip, rename, and place the data as below. You will need to merge folders from different zip files.
 ${DEFT_ROOT}
  |-- data
  `-- |-- nuscenes
      `-- |-- v1.0-trainval
          |   |-- samples
          |   |   |-- CAM_BACK
          |   |   |   | -- xxx.jpg
          |   |   |-- CAM_BACK_LEFT
          |   |   |-- CAM_BACK_RIGHT
          |   |   |-- CAM_FRONT
          |   |   |-- CAM_FRONT_LEFT
          |   |   |-- CAM_FRONT_RIGHT
          |-- |-- maps
          `-- |-- v1.0-trainval_meta
  • Run the dataset preprocessing script.
cd src/tools/
convert_nuScenes.py

References

Please cite the corresponding References if you use the datasets.

  @article{MOT16,
    title = {{MOT}16: {A} Benchmark for Multi-Object Tracking},
    shorttitle = {MOT16},
    url = {http://arxiv.org/abs/1603.00831},
    journal = {arXiv:1603.00831 [cs]},
    author = {Milan, A. and Leal-Taix\'{e}, L. and Reid, I. and Roth, S. and Schindler, K.},
    month = mar,
    year = {2016},
    note = {arXiv: 1603.00831},
    keywords = {Computer Science - Computer Vision and Pattern Recognition}
  }


  @INPROCEEDINGS{Geiger2012CVPR,
    author = {Andreas Geiger and Philip Lenz and Raquel Urtasun},
    title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite},
    booktitle = {CVPR},
    year = {2012}
  }


  @inproceedings{nuscenes2019,
  title={{nuScenes}: A multimodal dataset for autonomous driving},
  author={Holger Caesar and Varun Bankiti and Alex H. Lang and Sourabh Vora and Venice Erin Liong and Qiang Xu and Anush Krishnan and Yu Pan and Giancarlo Baldan and Oscar Beijbom},
  booktitle={CVPR},
  year={2020}
  }

Training and Evaluation Experiments

Scripts for training and evaluating DEFT on MOT, KITTI and nuScenes are available in the experiments folder. The outputs videos and results (same as submission format) will be on the folders $dataset_name$_videos and $dataset_name$_results.

Acknowledgement

A large portion of code is borrowed from xingyizhou/CenterTrack, shijieS/SST and Zhongdao/Towards-Realtime-MOT, many thanks to their wonderful work!

Owner
Mohamed Chaabane
PhD Student, Computer Science @ Colorado State University with a deep interest in Deep learning, Machine Learning and Computer Vision.
Mohamed Chaabane
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022
Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch.

Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch! Now, Rearrange and Reduce in einops.layers.jittor are support!!

130 Jan 08, 2023
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles This project is for the paper: Detecting Errors and Estimating

Jiefeng Chen 13 Nov 21, 2022
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashl

89 Dec 10, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

OpenAI 3k Dec 26, 2022
People Interaction Graph

Gihan Jayatilaka*, Jameel Hassan*, Suren Sritharan*, Janith Senananayaka, Harshana Weligampola, et. al., 2021. Holistic Interpretation of Public Scenes Using Computer Vision and Temporal Graphs to Id

University of Peradeniya : COVID Research Group 1 Aug 24, 2022
Manifold Alignment for Semantically Aligned Style Transfer

Manifold Alignment for Semantically Aligned Style Transfer [Paper] Getting Started MAST has been tested on CentOS 7.6 with python = 3.6. It supports

35 Nov 14, 2022
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Evaluating the Factual Consistency of Abstractive Text Summarization Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher Int

Salesforce 165 Dec 21, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
A curated list of long-tailed recognition resources.

Awesome Long-tailed Recognition A curated list of long-tailed recognition and related resources. Please feel free to pull requests or open an issue to

Zhiwei ZHANG 542 Jan 01, 2023
The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines.

The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace

8 Dec 04, 2022
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample

Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A

이준혁(Junhyeok Lee) 64 Dec 22, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of

264 Jan 09, 2023
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021