Real-Time and Accurate Full-Body Multi-Person Pose Estimation&Tracking System

Overview

News!

  • Aug 2020: v0.4.0 version of AlphaPose is released! Stronger tracking! Include whole body(face,hand,foot) keypoints! Colab now available.
  • Dec 2019: v0.3.0 version of AlphaPose is released! Smaller model, higher accuracy!
  • Apr 2019: MXNet version of AlphaPose is released! It runs at 23 fps on COCO validation set.
  • Feb 2019: CrowdPose is integrated into AlphaPose Now!
  • Dec 2018: General version of PoseFlow is released! 3X Faster and support pose tracking results visualization!
  • Sep 2018: v0.2.0 version of AlphaPose is released! It runs at 20 fps on COCO validation set (4.6 people per image on average) and achieves 71 mAP!

AlphaPose

AlphaPose is an accurate multi-person pose estimator, which is the first open-source system that achieves 70+ mAP (75 mAP) on COCO dataset and 80+ mAP (82.1 mAP) on MPII dataset. To match poses that correspond to the same person across frames, we also provide an efficient online pose tracker called Pose Flow. It is the first open-source online pose tracker that achieves both 60+ mAP (66.5 mAP) and 50+ MOTA (58.3 MOTA) on PoseTrack Challenge dataset.

AlphaPose supports both Linux and Windows!


COCO 17 keypoints

Halpe 26 keypoints + tracking

Halpe 136 keypoints + tracking

Results

Pose Estimation

Results on COCO test-dev 2015:

Method AP @0.5:0.95 AP @0.5 AP @0.75 AP medium AP large
OpenPose (CMU-Pose) 61.8 84.9 67.5 57.1 68.2
Detectron (Mask R-CNN) 67.0 88.0 73.1 62.2 75.6
AlphaPose 73.3 89.2 79.1 69.0 78.6

Results on MPII full test set:

Method Head Shoulder Elbow Wrist Hip Knee Ankle Ave
OpenPose (CMU-Pose) 91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6
Newell & Deng 92.1 89.3 78.9 69.8 76.2 71.6 64.7 77.5
AlphaPose 91.3 90.5 84.0 76.4 80.3 79.9 72.4 82.1

More results and models are available in the docs/MODEL_ZOO.md.

Pose Tracking

Please read trackers/README.md for details.

CrowdPose

Please read docs/CrowdPose.md for details.

Installation

Please check out docs/INSTALL.md

Model Zoo

Please check out docs/MODEL_ZOO.md

Quick Start

  • Colab: We provide a colab example for your quick start.

  • Inference: Inference demo

./scripts/inference.sh ${CONFIG} ${CHECKPOINT} ${VIDEO_NAME} # ${OUTPUT_DIR}, optional

For high level API, please refer to ./scripts/demo_api.py

  • Training: Train from scratch
./scripts/train.sh ${CONFIG} ${EXP_ID}
  • Validation: Validate your model on MSCOCO val2017
./scripts/validate.sh ${CONFIG} ${CHECKPOINT}

Examples:

Demo using FastPose model.

./scripts/inference.sh configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml pretrained_models/fast_res50_256x192.pth ${VIDEO_NAME}
#or
python scripts/demo_inference.py --cfg configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml --checkpoint pretrained_models/fast_res50_256x192.pth --indir examples/demo/

Train FastPose on mscoco dataset.

./scripts/train.sh ./configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml exp_fastpose

More detailed inference options and examples, please refer to GETTING_STARTED.md

Common issue & FAQ

Check out faq.md for faq. If it can not solve your problems or if you find any bugs, don't hesitate to comment on GitHub or make a pull request!

Contributors

AlphaPose is based on RMPE(ICCV'17), authored by Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai and Cewu Lu, Cewu Lu is the corresponding author. Currently, it is maintained by Jiefeng Li*, Hao-shu Fang*, Yuliang Xiu and Chao Xu.

The main contributors are listed in doc/contributors.md.

TODO

  • Multi-GPU/CPU inference
  • 3D pose
  • add tracking flag
  • PyTorch C++ version
  • Add MPII and AIC data
  • dense support
  • small box easy filter
  • Crowdpose support
  • Speed up PoseFlow
  • Add stronger/light detectors and the mobile pose
  • High level API

We would really appreciate if you can offer any help and be the contributor of AlphaPose.

Citation

Please cite these papers in your publications if it helps your research:

@inproceedings{fang2017rmpe,
  title={{RMPE}: Regional Multi-person Pose Estimation},
  author={Fang, Hao-Shu and Xie, Shuqin and Tai, Yu-Wing and Lu, Cewu},
  booktitle={ICCV},
  year={2017}
}

@article{li2018crowdpose,
  title={CrowdPose: Efficient Crowded Scenes Pose Estimation and A New Benchmark},
  author={Li, Jiefeng and Wang, Can and Zhu, Hao and Mao, Yihuan and Fang, Hao-Shu and Lu, Cewu},
  journal={arXiv preprint arXiv:1812.00324},
  year={2018}
}

@inproceedings{xiu2018poseflow,
  author = {Xiu, Yuliang and Li, Jiefeng and Wang, Haoyu and Fang, Yinghong and Lu, Cewu},
  title = {{Pose Flow}: Efficient Online Pose Tracking},
  booktitle={BMVC},
  year = {2018}
}

License

AlphaPose is freely available for free non-commercial use, and may be redistributed under these conditions. For commercial queries, please drop an e-mail at mvig.alphapose[at]gmail[dot]com and cc lucewu[[at]sjtu[dot]edu[dot]cn. We will send the detail agreement to you.

Owner
Machine Vision and Intelligence Group @ SJTU
Machine Vision and Intelligence Group @ SJTU
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
The second project in Python course on FCC

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Denise T 1 Dec 13, 2021
Trajectory Extraction of road users via Traffic Camera

Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th

Julian Strosahl 14 Dec 17, 2022
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
Implementation of the paper "Shapley Explanation Networks"

Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta

68 Dec 27, 2022
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation [Project] [Paper] [arXiv] [Home] Official implementation of FastFCN:

Wu Huikai 815 Dec 29, 2022
Metrics to evaluate quality and efficacy of synthetic datasets.

An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://

The Synthetic Data Vault Project 129 Jan 03, 2023
Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Spchcat Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi. Description spchcat is a command-line tool that read

Pete Warden 279 Jan 03, 2023
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
中文语音识别系列,读者可以借助它快速训练属于自己的中文语音识别模型,或直接使用预训练模型测试效果。

MASR中文语音识别(pytorch版) 开箱即用 自行训练 使用与训练分离(增量训练) 识别率高 说明:因为每个人电脑机器不同,而且有些安装包安装起来比较麻烦,强烈建议直接用我编译好的docker环境跑 目前docker基础环境为ubuntu-cuda10.1-cudnn7-pytorch1.6.

发送小信号 180 Dec 17, 2022
Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee TopologyPreservation in Segmentations"

TEDS-Net Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transfo

Madeleine K Wyburd 14 Jan 04, 2023
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
ZeroVL - The official implementation of ZeroVL

This repository contains source code necessary to reproduce the results presente

31 Nov 04, 2022
SmallInitEmb - LayerNorm(SmallInit(Embedding)) in a Transformer to improve convergence

SmallInitEmb LayerNorm(SmallInit(Embedding)) in a Transformer I find that when t

PENG Bo 11 Dec 25, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
Implementation of CVPR'2022:Surface Reconstruction from Point Clouds by Learning Predictive Context Priors

Surface Reconstruction from Point Clouds by Learning Predictive Context Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository c

136 Dec 12, 2022