CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

Related tags

Deep LearningCRLT
Overview

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

This repository contains the code and relevant instructions of CRLT.

Overview

The goal of CRLT is to provide an out-of-the-box toolkit for contrastive learning. Users only need to provide unlabeled data and edit a configuration file in the format of JSON, and then they can quickly train, use and evaluate representation learning models. CRLT consists of 6 critical modules, including data synthesis, negative sampling, representation encoders, learning paradigm, optimizing strategy and model evaluation. For each module, CRLT provides various popular implementations and therefore different kinds of CL architectures can be easily constructed using CRLT.

framework

Installation

Requirements

First, run the following script to install the relevant dependencies

conda env create -f requirements.yaml

Then, install PyTorch by following the instructions from the official website. Please use the correct 1.10 version corresponding to your platforms/CUDA versions. PyTorch version higher than 1.10 should also work. For example, if you use Linux and CUDA10.2, install PyTorch by the following command,

conda activate crlt
conda install pytorch==1.10.0 cudatoolkit=10.2 -c pytorch

The evaluation code for sentence embeddings is based on a modified version of SentEval. It evaluates sentence embeddings on semantic textual similarity (STS) tasks and downstream transfer tasks. For STS tasks, our evaluation takes the "all" setting, and report Spearman's correlation. See SimCSE for more details.

Before training, please download the relevent datasets by running:

cd utils/SentEval/data/downstream/
bash download.sh

Then, running the command to install the SentEval toolkit:

cd utils/SentEval
python setyp.py install

Getting Started

Data

For unsupervised training, we use sentences from English Wikipedia provided by SimCSE, and the relevant dataset should be download and moved to the data/wiki folder:

Filename Data Path Google Drive
wiki1m_for_simcse.csv data/wiki/ Download
wiki.csv data/wiki/ Download

When training, CRLT use the dev set of STSB task to evaluate the model, so the used file need to be download to data/STSB folder:

Filename Data Path Google Drive
stsb_above_4.csv data/STSB/ Download

Training

GUI

We provide example training scripts for SimCSE (the unsupervised version) by running:

conda activate crlt
python app.py

After editing the training parameters, users click the RUN button and will get the evaluation result on the same page.

Terminal

Rather than training with the web GUI, users can also train by running:

python main.py examples/simcse.json

Using different types of devices or different versions of CUDA/other softwares may lead to slightly different performance:

STS12 STS13 STS14 STS15 STS16 STSBenchmark SICKRelatedness Avg.
71.61 81.99 75.13 81.39 78.78 77.93 69.17 76.57

Bugs or questions?

If you have any questions related to the code or the usage, feel free to email [email protected]. If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Owner
XiaoMing
XiaoMing
Object detection using yolo-tiny model and opencv used as backend

Object detection Algorithm used : Yolo algorithm Backend : opencv Library required: opencv = 4.5.4-dev' Quick Overview about structure 1) main.py Load

2 Jul 06, 2022
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Yam Peleg 63 Sep 21, 2022
Baselines for TrajNet++

TrajNet++ : The Trajectory Forecasting Framework PyTorch implementation of Human Trajectory Forecasting in Crowds: A Deep Learning Perspective TrajNet

VITA lab at EPFL 183 Jan 05, 2023
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
PyTorch implementation of UNet++ (Nested U-Net).

PyTorch implementation of UNet++ (Nested U-Net) This repository contains code for a image segmentation model based on UNet++: A Nested U-Net Architect

4ui_iurz1 642 Jan 04, 2023
Bringing Characters to Life with Computer Brains in Unity

AI4Animation: Deep Learning for Character Control This project explores the opportunities of deep learning for character animation and control as part

Sebastian Starke 5.5k Jan 04, 2023
Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
Video-Music Transformer

VMT Video-Music Transformer (VMT) is an attention-based multi-modal model, which generates piano music for a given video. Paper https://arxiv.org/abs/

Chin-Tung Lin 5 Jul 13, 2022
A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

Evan 1.3k Jan 02, 2023
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022