CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

Related tags

Deep LearningCRLT
Overview

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

This repository contains the code and relevant instructions of CRLT.

Overview

The goal of CRLT is to provide an out-of-the-box toolkit for contrastive learning. Users only need to provide unlabeled data and edit a configuration file in the format of JSON, and then they can quickly train, use and evaluate representation learning models. CRLT consists of 6 critical modules, including data synthesis, negative sampling, representation encoders, learning paradigm, optimizing strategy and model evaluation. For each module, CRLT provides various popular implementations and therefore different kinds of CL architectures can be easily constructed using CRLT.

framework

Installation

Requirements

First, run the following script to install the relevant dependencies

conda env create -f requirements.yaml

Then, install PyTorch by following the instructions from the official website. Please use the correct 1.10 version corresponding to your platforms/CUDA versions. PyTorch version higher than 1.10 should also work. For example, if you use Linux and CUDA10.2, install PyTorch by the following command,

conda activate crlt
conda install pytorch==1.10.0 cudatoolkit=10.2 -c pytorch

The evaluation code for sentence embeddings is based on a modified version of SentEval. It evaluates sentence embeddings on semantic textual similarity (STS) tasks and downstream transfer tasks. For STS tasks, our evaluation takes the "all" setting, and report Spearman's correlation. See SimCSE for more details.

Before training, please download the relevent datasets by running:

cd utils/SentEval/data/downstream/
bash download.sh

Then, running the command to install the SentEval toolkit:

cd utils/SentEval
python setyp.py install

Getting Started

Data

For unsupervised training, we use sentences from English Wikipedia provided by SimCSE, and the relevant dataset should be download and moved to the data/wiki folder:

Filename Data Path Google Drive
wiki1m_for_simcse.csv data/wiki/ Download
wiki.csv data/wiki/ Download

When training, CRLT use the dev set of STSB task to evaluate the model, so the used file need to be download to data/STSB folder:

Filename Data Path Google Drive
stsb_above_4.csv data/STSB/ Download

Training

GUI

We provide example training scripts for SimCSE (the unsupervised version) by running:

conda activate crlt
python app.py

After editing the training parameters, users click the RUN button and will get the evaluation result on the same page.

Terminal

Rather than training with the web GUI, users can also train by running:

python main.py examples/simcse.json

Using different types of devices or different versions of CUDA/other softwares may lead to slightly different performance:

STS12 STS13 STS14 STS15 STS16 STSBenchmark SICKRelatedness Avg.
71.61 81.99 75.13 81.39 78.78 77.93 69.17 76.57

Bugs or questions?

If you have any questions related to the code or the usage, feel free to email [email protected]. If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Owner
XiaoMing
XiaoMing
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
chainladder - Property and Casualty Loss Reserving in Python

chainladder (python) chainladder - Property and Casualty Loss Reserving in Python This package gets inspiration from the popular R ChainLadder package

Casualty Actuarial Society 130 Dec 07, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Duong Tran Thanh 37 Dec 16, 2022
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs

catsetmat The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs To be able to run it, add catsetmat to PYTHONPATH H

2 Dec 19, 2022
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s

Dynamic Vision and Learning Group 41 Dec 10, 2022
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | 简体中文 MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Aigege 8 Mar 31, 2022
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

Phil Wang 4.4k Jan 03, 2023
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

144 Dec 30, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne

MALL Lab (IISc) 56 Dec 03, 2022
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022
Code for the paper "On the Power of Edge Independent Graph Models"

Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So

Konstantinos Sotiropoulos 0 Oct 26, 2021