UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

Overview

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21

UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks. The project requires Python 3, and several dependencies. This code is released for the course of Autonomous Networking - A.A. 2020-2021, to develop and test AI based protocols.

Execution

In order to execute UAV-Networks-Routing project from the terminal, clone the git project and place yourself in UAV-Networks-Routing directory, then and run:

python -m src.main

The simulation will start in a new window, the parameters of the simulation are set in src.utilities.config, have a look at the simulation setup in the configuration file to understand what is going on in the simulation.

Project structure

The project has the following structure:

.
├── README.md
├── data
│   └── tours
│       ├── RANDOM_missions1.json
│       ├── ...
│       └── RANDOM_missions90.json
└── src
    ├── main.py
    ├── drawing
    │   ├── color.py
    │   ├── picture.py
    │   ├── pp_draw.py
    │   └── stddraw.py
    ├── entities
    │   └── uav_entities.py
    ├── experiments
    ├── routing_algorithms
    │   └── georouting.py
    ├── simulation
    │   ├── metrics.py
    │   └── simulator.py
    └── utilities
        ├── config.py
        └── utilities.py

The entry point of the project is the src.main file, from there you can run simulations and extensive experimental campaigns, by setting up an appropriate src.simulator.Simulator object.

On a high level, the two main directories are data and src. The directory data must contain all the data of the project, like drones tours, and other input and output of the project. The directory src contains the source code, organized in several packages.

  • src.drawing it contains all the classes needed for drawing the simulation on screen. Typically you may want to get your hands in this directory if you want to change the aspect of the simulation, display a new object, or label on the area.

  • src.entites it contains all the classes that define the behaviour and the structure of the main entities of the project like: Drone, Depot, Environment, Packet, Event classes.

  • src.experiments it contains classes that handle experimental campaigns.

  • src.routing_algorithms it contains all the classes modelling the several routing algorithms, every routing algorithm should have its own class, see section Adding routing algorithms below.

  • src.simulation it contains all the classes to handle a simulation and its metrics.

  • src.utilities it contains all the utilities and the configuration parameters. In particular use src.utilities.config file to specify all the constants and parameters for a one-shot simulation, ideal when one wants to evaluate the quality of a routing algorithm making frequent executions. Constants and parameters should always be added here and never be hard-coded.

Understand the project

In this section it will be given a high level overview of the project. Before adding any new file to the project, as a contribute, you may want to run some simulations, understand the idea behind the simulator, and the routing algorithm available.

Make some simulations

Run a simulation from src.main, on a new window it will be displayed a live simulation. At the end of the simulation some metrics will be printed. In the main function, a Simulator object is instantiated with default parameters coming from the src.utilities.config. In order to make different executions and simulations, you may want to let the parameters in the config file vary appropriately.

Let us make an example with an excerpt of the configuration file:

SIM_DURATION = 7000   # int: steps of simulation. # ***
TS_DURATION = 0.150   # float: seconds duration of a step in seconds.
SEED = 1              # int: seed of this simulation.

N_DRONES = 5          # int: number of drones. # ***
ENV_WIDTH = 1500      # float: meters, width of environment.
ENV_HEIGHT = 1500     # float: meters, height of environment.

# events
EVENTS_DURATION = SIM_DURATION   # int: steps, number of time steps that an event lasts.
D_FEEL_EVENT = 500               # int: steps, a new packet is felt (generated on the drone) every 'D_FEEL_EVENT' steps. # ***
P_FEEL_EVENT = .25               # float: probability that the drones feels the event generated on the drone. # ***

From this excerpt, one expects a simulation that lasts for 7000 steps of 0.150 seconds each. The executions will run with seed 1, with 5 drones flying over an area of 1500m * 1500m. The events on the map last for the entire duration of the simulation. The drones are set to feel an event every 500 steps, but they feel it with probability 0.25.

Simulator and K-Routing algorithm

In the simulator, time is simulated. A simulation lasts for SIM_DURATION steps, lasting TS_DURATION seconds each. During a single step, as one can see from src.simulator.Simulator.run(), essentially 4 things happen, for every drone:

  1. it feels an event, if it's the right moment and if it is lucky enough to grasp it from the environment.

  2. it updates the packets in its buffer, deleting all the packets that are expired.

  3. it routes its buffer to its neighbours, if it has any.

  4. it sets its next waypoint and moves towards it, it can be either a point in the map, or the depot, depending on what the routing algorithm decides for it.

The UAVs can have any possible path/tour given by a json file (a dict id_drone : list of waypoints). Notice that a waypoint is a 2-tuple (x, y), the coordinate of the point. Events are generated right on the drone. If an event is successfully "felt", the drone generates a packet out of it and it is responsible to bring it to the depot according to the routing algorithm currently running. Packets can expire and have a TTL to avoid infinite pin-pongs, that are seen to be rare.

The routing algorithms in the project go under the directorysrc.routing_algorithms .

Adding routing algorithms

Routing algorithms should be implemented as a class, extending the src.routing_algorithms.BASE_routing class. This will need the definition of required methods, such as: routing().

Once created, the class should be declared in the configuration file, specifically in the RoutingAlgorithm enumeration, in which it suffices to give a name to the enumeration variable and associate it to the class name. For instance if the created routing algorithm class is named MyRouting, then add in src.utilities.config to the RoutingAlgorithm enumeration the enumeration variable MY_ROUTING = MyRouting.

To run a simulation with your new routing algorithms, just set the attribute ROUTING_ALGORITHM in the config file with the enumeration variable of your choice.

Contacts

For further information contact Andrea Coletta at coletta[AT]di.uniroma1.it.

Thanks and License

The current version of the simulator is free for non-commercial use. The simulator was done in collaboration with Matteo Prata, PhD Student at La Sapienza prata[AT]di.uniroma1.it.

The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color

The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color Overview Code and dataset for The World of an Octopus: H

1 Nov 13, 2021
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

U-Net Implementation By Christopher Ley This is my interpretation and implementation of the famous paper "U-Net: Convolutional Networks for Biomedical

Christopher Ley 1 Jan 06, 2022
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi

25 Dec 20, 2022
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
Language-Driven Semantic Segmentation

Language-driven Semantic Segmentation (LSeg) The repo contains official PyTorch Implementation of paper Language-driven Semantic Segmentation. Authors

Intelligent Systems Lab Org 416 Jan 03, 2023
Datasets, Transforms and Models specific to Computer Vision

torchvision The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. Installat

13.1k Jan 02, 2023
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Joel Huang 15 Dec 24, 2022