Face uncertainty quantification or estimation using PyTorch.

Overview

Face-uncertainty-pytorch

This is a demo code of face uncertainty quantification or estimation using PyTorch. The uncertainty of face recognition is affected by the ability of the recognition model (model uncertainty) and the quality of the input image (data uncertainty).

Model Uncertainty:

  • MC-Dropout

Data Uncertainty:

Usage

Preprocessing

Download the MS-Celeb-1M dataset from 1 or 2:

  1. insightface, https://github.com/deepinsight/insightface/wiki/Dataset-Zoo
  2. face.evoLVe.PyTorch, https://github.com/ZhaoJ9014/face.evoLVe.PyTorch#Data-Zoo)

Decode it using the code: https://github.com/deepinsight/insightface/blob/master/recognition/common/rec2image.py

Training

  1. Download the base model from https://github.com/deepinsight/insightface/tree/master/recognition/arcface_torch

  2. Modify the configuration files under config/ folder.

  3. Start the training:

    python network.py --config_file config/config_ir50_idq_loss_glint360k.py
    Start Training
    name: glint_ir50_idq
    num_epochs: 12
    epoch_size: 1000
    batch_size: 80
    num_c_in_batch 10 num_img_each_c 8.0
    IDQ_loss soft 16 0.45
    2022-01-12 23:37:48 [0-100] | loss 0.535 lr0.01 cos 0.55 1.00 0.18 pconf 0.77 1.00 0.15 t_soft 0.69 1.00 0.01 uloss 0.535 mem 3.1 G
    2022-01-12 23:38:12 [0-200] | loss 0.464 lr0.01 cos 0.58 0.93 0.08 pconf 0.75 1.00 0.05 t_soft 0.76 1.00 0.00 uloss 0.464 mem 3.1 G
    2022-01-12 23:38:37 [0-300] | loss 0.533 lr0.01 cos 0.52 1.00 0.04 pconf 0.78 0.99 0.25 t_soft 0.63 1.00 0.00 uloss 0.533 mem 3.1 G
    2022-01-12 23:39:02 [0-400] | loss 0.511 lr0.01 cos 0.52 0.99 0.09 pconf 0.77 0.99 0.16 t_soft 0.61 1.00 0.00 uloss 0.511 mem 3.1 G
    2022-01-12 23:39:27 [0-500] | loss 0.554 lr0.01 cos 0.48 0.97 0.05 pconf 0.77 0.99 0.18 t_soft 0.56 1.00 0.00 uloss 0.554 mem 3.1 G
    2022-01-12 23:39:52 [0-600] | loss 0.462 lr0.01 cos 0.55 0.95 0.19 pconf 0.78 0.99 0.23 t_soft 0.70 1.00 0.01 uloss 0.462 mem 3.1 G
    2022-01-12 23:40:17 [0-700] | loss 0.408 lr0.01 cos 0.55 0.96 0.07 pconf 0.78 0.99 0.07 t_soft 0.70 1.00 0.00 uloss 0.408 mem 3.1 G
    2022-01-12 23:40:42 [0-800] | loss 0.532 lr0.01 cos 0.51 0.99 0.03 pconf 0.80 0.99 0.25 t_soft 0.63 1.00 0.00 uloss 0.532 mem 3.1 G
    2022-01-12 23:41:06 [0-900] | loss 0.563 lr0.01 cos 0.54 1.00 0.03 pconf 0.80 0.99 0.13 t_soft 0.66 1.00 0.00 uloss 0.563 mem 3.1 G
    2022-01-12 23:41:27 [0-1000] | loss 0.570 lr0.01 cos 0.50 0.86 0.11 pconf 0.78 0.99 0.16 t_soft 0.61 1.00 0.00 uloss 0.570 mem 3.1 G
    ---cfp_fp
    sigma_sq [0.00263163 0.01750576 0.04416942 0.10698225 0.23958328 0.46090251
     0.92462665] percentile [0, 10, 30, 50, 70, 90, 100]
    reject_factor 0.0000 risk_threshold 0.924627 keep_idxes 7000 / 7000 Cosine score eer 0.012571 fmr100 0.012571 fmr1000 0.018286
    reject_factor 0.0500 risk_threshold 0.650710 keep_idxes 6655 / 7000 Cosine score eer 0.004357 fmr100 0.003900 fmr1000 0.006601
    reject_factor 0.1000 risk_threshold 0.556291 keep_idxes 6300 / 7000 Cosine score eer 0.003968 fmr100 0.003791 fmr1000 0.006003
    reject_factor 0.1500 risk_threshold 0.509630 keep_idxes 5951 / 7000 Cosine score eer 0.003864 fmr100 0.004013 fmr1000 0.005351
    reject_factor 0.2000 risk_threshold 0.459032 keep_idxes 5600 / 7000 Cosine score eer 0.003392 fmr100 0.003540 fmr1000 0.004248
    reject_factor 0.2500 risk_threshold 0.421400 keep_idxes 5251 / 7000 Cosine score eer 0.003236 fmr100 0.003407 fmr1000 0.003785
    reject_factor 0.3000 risk_threshold 0.389943 keep_idxes 4903 / 7000 Cosine score eer 0.002651 fmr100 0.002436 fmr1000 0.002842
    reject_factor mean --------------------------------------------- Cosine score fmr1000 0.002684
    AUERC: 0.0026
    AUERC30: 0.0017
    AUC: 0.0024
    AUC30: 0.0015
    

Testing

We use lfw.bin, cfp_fp.bin, etc. from ms1m-retinaface-t1 as the test dataset.

python evaluation/verification_risk_fnmr.py

MC-Dropout

python mc_dropout/verification_risk_mcdropout_fnmr.py
Owner
Kaen
Kaen
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Nidhal Baccouri 3k Jan 05, 2023
This library provides an abstraction to perform Model Versioning using Weight & Biases.

Description This library provides an abstraction to perform Model Versioning using Weight & Biases. Features Version a new trained model Promote a mod

Hector Lopez Almazan 2 Jan 28, 2022
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pérez-García 1.6k Jan 06, 2023
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

117 Dec 27, 2022
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

Friederike Metz 7 Apr 23, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
Code for "Diffusion is All You Need for Learning on Surfaces"

Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked

Nick Sharp 247 Dec 28, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
Mixed Neural Likelihood Estimation for models of decision-making

Mixed neural likelihood estimation for models of decision-making Mixed neural likelihood estimation (MNLE) enables Bayesian parameter inference for mo

mackelab 9 Dec 22, 2022
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
Codebase for Inducing Causal Structure for Interpretable Neural Networks

Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa

Zen 6 Oct 10, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022