scikit-multimodallearn is a Python package implementing algorithms multimodal data.

Overview
pipeline status coverage report

scikit-multimodallearn

scikit-multimodallearn is a Python package implementing algorithms multimodal data.

It is compatible with scikit-learn, a popular package for machine learning in Python.

Documentation

The documentation including installation instructions, API documentation and examples is available online.

Installation

Dependencies

scikit-multimodallearn works with Python 3.5 or later.

scikit-multimodallearn depends on scikit-learn (version >= 0.19).

Optionally, matplotlib is required to run the examples.

Installation using pip

scikit-multimodallearn is available on PyPI and can be installed using pip:

pip install scikit-multimodallearn

Development

The development of this package follows the guidelines provided by the scikit-learn community.

Refer to the Developer's Guide of the scikit-learn project for more details.

Source code

You can get the source code from the Git repository of the project:

git clone [email protected]:dev/multiconfusion.git

Testing

pytest and pytest-cov are required to run the test suite with:

cd multimodal
pytest

A code coverage report is displayed in the terminal when running the tests. An HTML version of the report is also stored in the directory htmlcov.

Generating the documentation

The generation of the documentation requires sphinx, sphinx-gallery, numpydoc and matplotlib and can be run with:

python setup.py build_sphinx

The resulting files are stored in the directory build/sphinx/html.

Credits

scikit-multimodallearn is developped by the development team of the LIS.

If you use scikit-multimodallearn in a scientific publication, please cite the following paper:

@InProceedings{Koco:2011:BAMCC,
 author={Ko\c{c}o, Sokol and Capponi, C{\'e}cile},
 editor={Gunopulos, Dimitrios and Hofmann, Thomas and Malerba, Donato
         and Vazirgiannis, Michalis},
 title={A Boosting Approach to Multiview Classification with Cooperation},
 booktitle={Proceedings of the 2011 European Conference on Machine Learning
            and Knowledge Discovery in Databases - Volume Part II},
 year={2011},
 location={Athens, Greece},
 publisher={Springer-Verlag},
 address={Berlin, Heidelberg},
 pages={209--228},
 numpages = {20},
 isbn={978-3-642-23783-6}
 url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14},
 keywords={boosting, classification, multiview learning,
           supervised learning},
}

@InProceedings{Huu:2019:BAMCC,
 author={Huusari, Riika, Kadri Hachem and Capponi, C{\'e}cile},
 editor={},
 title={Multi-view Metric Learning in Vector-valued Kernel Spaces},
 booktitle={arXiv:1803.07821v1},
 year={2018},
 location={Athens, Greece},
 publisher={},
 address={},
 pages={209--228},
 numpages = {12}
 isbn={978-3-642-23783-6}
 url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14},
 keywords={boosting, classification, multiview learning,
           merric learning, vector-valued, kernel spaces},
}

References

  • Sokol Koço, Cécile Capponi, "Learning from Imbalanced Datasets with cross-view cooperation" Linking and mining heterogeneous an multi-view data, Unsupervised and semi-supervised learning Series Editor M. Emre Celeri, pp 161-182, Springer
  • Sokol Koço, Cécile Capponi, "A boosting approach to multiview classification with cooperation", Proceedings of the 2011 European Conference on Machine Learning (ECML), Athens, Greece, pp.209-228, 2011, Springer-Verlag.
  • Sokol Koço, "Tackling the uneven views problem with cooperation based ensemble learning methods", PhD Thesis, Aix-Marseille Université, 2013.
  • Riikka Huusari, Hachem Kadri and Cécile Capponi, "Multi-View Metric Learning in Vector-Valued Kernel Spaces" in International Conference on Artificial Intelligence and Statistics (AISTATS) 2018

Copyright

Université d'Aix Marseille (AMU) - Centre National de la Recherche Scientifique (CNRS) - Université de Toulon (UTLN).

Copyright © 2017-2018 AMU, CNRS, UTLN

License

scikit-multimodallearn is free software: you can redistribute it and/or modify it under the terms of the New BSD License

This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

MLProject_01 This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev Context Dataset English question data set file F

Hadi Nakhi 1 Dec 18, 2021
A comprehensive repository containing 30+ notebooks on learning machine learning!

A comprehensive repository containing 30+ notebooks on learning machine learning!

Jean de Dieu Nyandwi 3.8k Jan 09, 2023
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
Python factor analysis library (PCA, CA, MCA, MFA, FAMD)

Prince is a library for doing factor analysis. This includes a variety of methods including principal component analysis (PCA) and correspondence anal

Max Halford 915 Dec 31, 2022
Microsoft Machine Learning for Apache Spark

Microsoft Machine Learning for Apache Spark MMLSpark is an ecosystem of tools aimed towards expanding the distributed computing framework Apache Spark

Microsoft Azure 3.9k Dec 30, 2022
A Python implementation of the Robotics Toolbox for MATLAB

Robotics Toolbox for Python A Python implementation of the Robotics Toolbox for MATLAB® GitHub repository Documentation Wiki (examples and details) Sy

Peter Corke 1.2k Jan 07, 2023
AutoOED: Automated Optimal Experiment Design Platform

AutoOED is an optimal experiment design platform powered with automated machine learning to accelerate the discovery of optimal solutions. Our platform solves multi-objective optimization problems an

Yunsheng Tian 107 Jan 03, 2023
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions

ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in

Computational Data Science Lab 182 Dec 31, 2022
A simple machine learning package to cluster keywords in higher-level groups.

Simple Keyword Clusterer A simple machine learning package to cluster keywords in higher-level groups. Example: "Senior Frontend Engineer" -- "Fronte

Andrea D'Agostino 10 Dec 18, 2022
A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

Johann Faouzi 1.4k Jan 01, 2023
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile

matrixprofile-ts matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keo

Target 696 Dec 26, 2022
SPCL 48 Dec 12, 2022
Tutorial for Decision Threshold In Machine Learning.

Decision-Threshold-ML Tutorial for improve skills: 'Decision Threshold In Machine Learning' (from GeeksforGeeks) by Marcus Mariano For more informatio

0 Jan 20, 2022
The code from the Machine Learning Bookcamp book and a free course based on the book

The code from the Machine Learning Bookcamp book and a free course based on the book

Alexey Grigorev 5.5k Jan 09, 2023
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
A flexible CTF contest platform for coming PKU GeekGame events

Project Guiding Star: the Backend A flexible CTF contest platform for coming PKU GeekGame events Still in early development Highlights Not configurabl

PKU GeekGame 14 Dec 15, 2022
A Python implementation of FastDTW

fastdtw Python implementation of FastDTW [1], which is an approximate Dynamic Time Warping (DTW) algorithm that provides optimal or near-optimal align

tanitter 651 Jan 04, 2023