TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

Related tags

Deep LearningTorchGRL
Overview

TorchGRL

TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.TorchGRL is a modular simulation framework that integrates different GRL algorithms and SUMO simulation platform to realize the simulation of multi-agents decision-making algorithms in mixed traffic environment. You can adjust the test scenarios and the implemented GRL algorithm according to your needs.


Preparation

Before starting to carry out some relevant works on our framework, some preparations are required to be done.

Hardware

Our framework is developed based on a laptop, and the specific configuration is as follows:

  • Operating system: Ubuntu 20.04
  • RAM: 32 GB
  • CPU: Intel (R) Core (TM) i9-10980HK CPU @ 2.40GHz
  • GPU: RTX 2070

It should be noted that our program must be reproduced under the Ubuntu 20.04 operating system, and we strongly recommend using GPU for training.

Development Environment

Before compiling the code of our framework, you need to install the following development environment:

  • Ubuntu 20.04 with latest GPU driver
  • Pycharm
  • Anaconda
  • CUDA 11.1
  • cudnn-11.1, 8.0.5.39

Installation

Please download our GRL framework repository first:

git clone https://github.com/Jacklinkk/TorchGRL.git

Then enter the root directory of TorchGRL:

cd TorchGRL

and please be sure to run the below commands from /path/to/TorchGRL.

Installation of FLOW

The FLOW library will be firstly installed.

Firstly, enter the flow directory:

cd flow

Then, create a conda environment from flow library:

conda env create -f environment.yml

Activate conda environment:

conda activate TorchGCQ

Install flow from source code:

python setup.py develop

Installation of SUMO

SUMO simulation platform will be installed. Please make sure to run the below commands in the "TorchGRL" virtual environment.

Install via pip:

pip install eclipse-sumo

Setting in Pycharm:

In order to adopt SUMO correctly, you need to define the environment variable of SUMO_HOME in Pycharm. The specific directory is:

/home/…/.conda/envs/TorchGCQ/lib/python3.7/site-packages/sumo

Setting in Ubuntu:

At first, run:

gedit ~/.bashrc

then copy the path name of SUMO_HOME to “~/.bashrc”:

export SUMO_HOME=“/home/…/.conda/envs/TorchGCQ/lib/python3.7/site-packages/sumo”

Finally, run:

source ~/.bashrc

Installation of Pytorch and related libraries

Please make sure to run the below commands in the "TorchGRL" virtual environment.

Installation of Pytorch:

We use Pytorch version 1.9.0 for development under a specific version of CUDA and cudnn.

pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

Installation of pytorch geometric:

Pytorch geometric is a Graph Neural Network (GNN) library upon Pytorch

pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-1.9.0+cu111.html

Installation of pfrl library

Please make sure to run the below commands in the "TorchGRL" virtual environment.

pfrl is a deep reinforcement learning library that implements various algorithms in Python using PyTorch.

Firstly, enter the pfrl directory:

cd pfrl

Then install from source code:

python setup.py develop

Instruction

flow folder

The flow folder is the root directory of the library after the FLOW library is installed through source code, including interface-related programs between DRL algorithms and SUMO platform.

Flow_Test folder

The Flow_Test folder includes the related programs of the test environment configuration; specifically, T_01.py is the core python program. If the program runs successfully, the environment configuration is successful.

pfrl folder

The pfrl folder is the root directory of the library after the deep reinforcement learning pfrl library is installed through source code, including all DRL related programs. The source program can be modified as needed.

GRLNet folder

The GRLNet folder contains the GRL neural network built in the Pytorch environment. You can modify the source code as needed or add your own neural network.

  • Pytorch_GRL.py constructs the fundamental neural network of GRL algorithms
  • Pytorch_GRL_Dueling.py constructs the dueling network of GRL algorithms

GRL_utils folder

The GRL_utils folder contains basic functions such as model training and testing, data storage, and curve drawing.

  • Train_and_Test.py contains the training and testing functions for the GRL model.
  • Data_Plot_Train.py is the function to plot the training data curve.
  • Data_Process_Test.py is the function to process the test data.
  • Fig folder stores the training data curve.
  • Logging_Training folder stores the training data generated by different GRL algorithms.
  • Logging_Test folder stores the testing data generated by different GRL algorithms.

GRL_Simulation folder

The GRL_Simulation folder is the core of our framework, which contains the core simulation program and some related functional programs.

  • main.py is the main program, containing the definition of FLOW parameters, as well as the controlling (start and end) of the simulation.
  • controller.py is the definition of vehicle control model based on FLOW library.
  • environment.py is the core program to build and initialize the simulation environment of SUMO.
  • network.py defines the road network.
  • registry_custom.py registers the simulation environment of SUMO to the gym library to realize the connection with GRL algorithms.
  • specific_environment.py defines the elements in MDPs, including state representation, action space and reward function.
  • Experiment folder is the core program of co-simulation under different GRL algorithms, including the initialization of the simulation environment, the initialization of the neural network, the training and testing of GRL algorithms, and the preservation of the training and testing results.
  • GRL_Trained_Models folder stores the trained GRL model when the training process ends.

Tutorial

You can simply run "main.py" in Pycharm to simulate the GRL algorithm, and observe the simulation process in SUMO platform. You can generate training plot such as Reward curve:

Verification of other algorithms

If you want to verify other algorithms, you can develop the source code as needed under the "Experiment folder", and don't forget to change the imported python script in "main.py". In addition, you can also construct your own network in GRLNet folder.

Verification of other traffic scenario

If you want to verify other traffic scenario, you can define a new scenario in "network.py". You can refer to the documentation of SUMO for more details .

Owner
XXQQ
XXQQ
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks) This repository contains a PyTorch implementation for the paper: Deep Pyra

Greg Dongyoon Han 262 Jan 03, 2023
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
Score refinement for confidence-based 3D multi-object tracking

Score refinement for confidence-based 3D multi-object tracking Our video gives a brief explanation of our Method. This is the official code for the pa

Cognitive Systems Research Group 47 Dec 26, 2022
A curated list and survey of awesome Vision Transformers.

English | 简体中文 A curated list and survey of awesome Vision Transformers. You can use mind mapping software to open the mind mapping source file. You c

OpenMMLab 281 Dec 21, 2022
Code for Max-Margin Contrastive Learning - AAAI 2022

Max-Margin Contrastive Learning This is a pytorch implementation for the paper Max-Margin Contrastive Learning accepted to AAAI 2022. This repository

Anshul Shah 12 Oct 22, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
Tensorflow 2 implementation of our high quality frame interpolation neural network

FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in

Google Research 1.6k Dec 28, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료

Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part

Sung Yun Byeon 269 Dec 21, 2022
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
Implementation of Memformer, a Memory-augmented Transformer, in Pytorch

Memformer - Pytorch Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attentio

Phil Wang 60 Nov 06, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Implementation of "Debiasing Item-to-Item Recommendations With Small Annotated Datasets" (RecSys '20)

Debiasing Item-to-Item Recommendations With Small Annotated Datasets This is the code for our RecSys '20 paper. Other materials can be found here: Ful

Microsoft 34 Aug 10, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
Camview - A CLI-tool used to stream CCTV online footage based on URL params

CamView A CLI-tool used to stream CCTV online footage based on URL params Get St

Finn Lancaster 54 Dec 09, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022