ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.

Overview

ByteTrack_ReID

ByteTrack is the SOTA tracker in MOT benchmarks with strong detector YOLOX and a simple association strategy only based on motion information.

Motion information (IoU distance) is efficient and effective in short-term tracking, but can not be used for recovering targets after long-time disappear or conditions with moving camera.

So it is important to enhance ByteTrack with a ReID module for long-term tracking, improving the performance under other challenging conditions, such as moving camera.

Some code is borrowed from FairMOT

For now, the results are trained on half of MOT17 and tested on the other half of MOT17. And the performance is lower than the original performance.

Any issue and suggestions are welcome!

tracking results using tracking strategy of ByteTrack, with detection head and ReID head trained together

tracking results using tracking strategy of FairMOT, with detection head and ReID head trained together

Modifications, TODOs and Performance

Modifications

  • Enhanced ByteTrack with a ReID module (head) following the paradigm of FairMOT.
  • Add a classifier for supervised training of ReID head.
  • Using uncertainty loss in FairMOT for the balance of detection and ReID tasks.
  • Tracking strategy is borrowed from FairMOT

TODOs

  • support more datasets
  • single class –> multiple class
  • other loss functions for better ReID performance
  • other strategies for multiple tasks balance
  • … …

The following contents is original README in ByteTrack.

PWC

PWC

ByteTrack is a simple, fast and strong multi-object tracker.

ByteTrack: Multi-Object Tracking by Associating Every Detection Box

Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Zehuan Yuan, Ping Luo, Wenyu Liu, Xinggang Wang

arXiv 2110.06864

Demo Links

Google Colab demo Huggingface Demo Original Paper: ByteTrack
Open In Colab Hugging Face Spaces arXiv 2110.06864

Abstract

Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects in videos. Most methods obtain identities by associating detection boxes whose scores are higher than a threshold. The objects with low detection scores, e.g. occluded objects, are simply thrown away, which brings non-negligible true object missing and fragmented trajectories. To solve this problem, we present a simple, effective and generic association method, tracking by associating every detection box instead of only the high score ones. For the low score detection boxes, we utilize their similarities with tracklets to recover true objects and filter out the background detections. When applied to 9 different state-of-the-art trackers, our method achieves consistent improvement on IDF1 scores ranging from 1 to 10 points. To put forwards the state-of-the-art performance of MOT, we design a simple and strong tracker, named ByteTrack. For the first time, we achieve 80.3 MOTA, 77.3 IDF1 and 63.1 HOTA on the test set of MOT17 with 30 FPS running speed on a single V100 GPU.

Tracking performance

Results on MOT challenge test set

Dataset MOTA IDF1 HOTA MT ML FP FN IDs FPS
MOT17 80.3 77.3 63.1 53.2% 14.5% 25491 83721 2196 29.6
MOT20 77.8 75.2 61.3 69.2% 9.5% 26249 87594 1223 13.7

Visualization results on MOT challenge test set

Installation

1. Installing on the host machine

Step1. Install ByteTrack.

git clone https://github.com/ifzhang/ByteTrack.git
cd ByteTrack
pip3 install -r requirements.txt
python3 setup.py develop

Step2. Install pycocotools.

pip3 install cython; pip3 install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'

Step3. Others

pip3 install cython_bbox

2. Docker build

docker build -t bytetrack:latest .

# Startup sample
mkdir -p pretrained && \
mkdir -p YOLOX_outputs && \
xhost +local: && \
docker run --gpus all -it --rm \
-v $PWD/pretrained:/workspace/ByteTrack/pretrained \
-v $PWD/datasets:/workspace/ByteTrack/datasets \
-v $PWD/YOLOX_outputs:/workspace/ByteTrack/YOLOX_outputs \
-v /tmp/.X11-unix/:/tmp/.X11-unix:rw \
--device /dev/video0:/dev/video0:mwr \
--net=host \
-e XDG_RUNTIME_DIR=$XDG_RUNTIME_DIR \
-e DISPLAY=$DISPLAY \
--privileged \
bytetrack:latest

Data preparation

Download MOT17, MOT20, CrowdHuman, Cityperson, ETHZ and put them under /datasets in the following structure:

datasets
   |——————mot
   |        └——————train
   |        └——————test
   └——————crowdhuman
   |         └——————Crowdhuman_train
   |         └——————Crowdhuman_val
   |         └——————annotation_train.odgt
   |         └——————annotation_val.odgt
   └——————MOT20
   |        └——————train
   |        └——————test
   └——————Cityscapes
   |        └——————images
   |        └——————labels_with_ids
   └——————ETHZ
            └——————eth01
            └——————...
            └——————eth07

Then, you need to turn the datasets to COCO format and mix different training data:

cd <ByteTrack_HOME>
python3 tools/convert_mot17_to_coco.py
python3 tools/convert_mot20_to_coco.py
python3 tools/convert_crowdhuman_to_coco.py
python3 tools/convert_cityperson_to_coco.py
python3 tools/convert_ethz_to_coco.py

Before mixing different datasets, you need to follow the operations in mix_xxx.py to create a data folder and link. Finally, you can mix the training data:

cd <ByteTrack_HOME>
python3 tools/mix_data_ablation.py
python3 tools/mix_data_test_mot17.py
python3 tools/mix_data_test_mot20.py

Model zoo

Ablation model

Train on CrowdHuman and MOT17 half train, evaluate on MOT17 half val

Model MOTA IDF1 IDs FPS
ByteTrack_ablation [google], [baidu(code:eeo8)] 76.6 79.3 159 29.6

MOT17 test model

Train on CrowdHuman, MOT17, Cityperson and ETHZ, evaluate on MOT17 train.

  • Standard models
Model MOTA IDF1 IDs FPS
bytetrack_x_mot17 [google], [baidu(code:ic0i)] 90.0 83.3 422 29.6
bytetrack_l_mot17 [google], [baidu(code:1cml)] 88.7 80.7 460 43.7
bytetrack_m_mot17 [google], [baidu(code:u3m4)] 87.0 80.1 477 54.1
bytetrack_s_mot17 [google], [baidu(code:qflm)] 79.2 74.3 533 64.5
  • Light models
Model MOTA IDF1 IDs Params(M) FLOPs(G)
bytetrack_nano_mot17 [google], [baidu(code:1ub8)] 69.0 66.3 531 0.90 3.99
bytetrack_tiny_mot17 [google], [baidu(code:cr8i)] 77.1 71.5 519 5.03 24.45

MOT20 test model

Train on CrowdHuman and MOT20, evaluate on MOT20 train.

Model MOTA IDF1 IDs FPS
bytetrack_x_mot20 [google], [baidu(code:3apd)] 93.4 89.3 1057 17.5

Training

The COCO pretrained YOLOX model can be downloaded from their model zoo. After downloading the pretrained models, you can put them under /pretrained.

  • Train ablation model (MOT17 half train and CrowdHuman)
cd <ByteTrack_HOME>
python3 tools/train.py -f exps/example/mot/yolox_x_ablation.py -d 8 -b 48 --fp16 -o -c pretrained/yolox_x.pth
  • Train MOT17 test model (MOT17 train, CrowdHuman, Cityperson and ETHZ)
cd <ByteTrack_HOME>
python3 tools/train.py -f exps/example/mot/yolox_x_mix_det.py -d 8 -b 48 --fp16 -o -c pretrained/yolox_x.pth
  • Train MOT20 test model (MOT20 train, CrowdHuman)

For MOT20, you need to clip the bounding boxes inside the image.

Add clip operation in line 134-135 in data_augment.py, line 122-125 in mosaicdetection.py, line 217-225 in mosaicdetection.py, line 115-118 in boxes.py.

cd <ByteTrack_HOME>
python3 tools/train.py -f exps/example/mot/yolox_x_mix_mot20_ch.py -d 8 -b 48 --fp16 -o -c pretrained/yolox_x.pth
  • Train custom dataset

First, you need to prepare your dataset in COCO format. You can refer to MOT-to-COCO or CrowdHuman-to-COCO. Then, you need to create a Exp file for your dataset. You can refer to the CrowdHuman training Exp file. Don't forget to modify get_data_loader() and get_eval_loader in your Exp file. Finally, you can train bytetrack on your dataset by running:

cd <ByteTrack_HOME>
python3 tools/train.py -f exps/example/mot/your_exp_file.py -d 8 -b 48 --fp16 -o -c pretrained/yolox_x.pth

Tracking

  • Evaluation on MOT17 half val

Run ByteTrack:

cd <ByteTrack_HOME>
python3 tools/track.py -f exps/example/mot/yolox_x_ablation.py -c pretrained/bytetrack_ablation.pth.tar -b 1 -d 1 --fp16 --fuse

You can get 76.6 MOTA using our pretrained model.

Run other trackers:

python3 tools/track_sort.py -f exps/example/mot/yolox_x_ablation.py -c pretrained/bytetrack_ablation.pth.tar -b 1 -d 1 --fp16 --fuse
python3 tools/track_deepsort.py -f exps/example/mot/yolox_x_ablation.py -c pretrained/bytetrack_ablation.pth.tar -b 1 -d 1 --fp16 --fuse
python3 tools/track_motdt.py -f exps/example/mot/yolox_x_ablation.py -c pretrained/bytetrack_ablation.pth.tar -b 1 -d 1 --fp16 --fuse
  • Test on MOT17

Run ByteTrack:

cd <ByteTrack_HOME>
python3 tools/track.py -f exps/example/mot/yolox_x_mix_det.py -c pretrained/bytetrack_x_mot17.pth.tar -b 1 -d 1 --fp16 --fuse
python3 tools/interpolation.py

Submit the txt files to MOTChallenge website and you can get 79+ MOTA (For 80+ MOTA, you need to carefully tune the test image size and high score detection threshold of each sequence).

  • Test on MOT20

We use the input size 1600 x 896 for MOT20-04, MOT20-07 and 1920 x 736 for MOT20-06, MOT20-08. You can edit it in yolox_x_mix_mot20_ch.py

Run ByteTrack:

cd <ByteTrack_HOME>
python3 tools/track.py -f exps/example/mot/yolox_x_mix_mot20_ch.py -c pretrained/bytetrack_x_mot20.pth.tar -b 1 -d 1 --fp16 --fuse --match_thresh 0.7 --mot20
python3 tools/interpolation.py

Submit the txt files to MOTChallenge website and you can get 77+ MOTA (For higher MOTA, you need to carefully tune the test image size and high score detection threshold of each sequence).

Applying BYTE to other trackers

See tutorials.

Combining BYTE with other detectors

Suppose you have already got the detection results 'dets' (x1, y1, x2, y2, score) from other detectors, you can simply pass the detection results to BYTETracker (you need to first modify some post-processing code according to the format of your detection results in byte_tracker.py):

from yolox.tracker.byte_tracker import BYTETracker
tracker = BYTETracker(args)
for image in images:
   dets = detector(image)
   online_targets = tracker.update(dets, info_imgs, img_size)

You can get the tracking results in each frame from 'online_targets'. You can refer to mot_evaluators.py to pass the detection results to BYTETracker.

Demo

cd <ByteTrack_HOME>
python3 tools/demo_track.py video -f exps/example/mot/yolox_x_mix_det.py -c pretrained/bytetrack_x_mot17.pth.tar --fp16 --fuse --save_result

Deploy

  1. ONNX export and ONNXRuntime
  2. TensorRT in Python
  3. TensorRT in C++
  4. ncnn in C++

Citation

@article{zhang2021bytetrack,
  title={ByteTrack: Multi-Object Tracking by Associating Every Detection Box},
  author={Zhang, Yifu and Sun, Peize and Jiang, Yi and Yu, Dongdong and Yuan, Zehuan and Luo, Ping and Liu, Wenyu and Wang, Xinggang},
  journal={arXiv preprint arXiv:2110.06864},
  year={2021}
}

@article{zhang2021fairmot,
  title={Fairmot: On the fairness of detection and re-identification in multiple object tracking},
  author={Zhang, Yifu and Wang, Chunyu and Wang, Xinggang and Zeng, Wenjun and Liu, Wenyu},
  journal={International Journal of Computer Vision},
  volume={129},
  pages={3069--3087},
  year={2021},
  publisher={Springer}
}

Acknowledgement

A large part of the code is borrowed from YOLOX, FairMOT, TransTrack and JDE-Cpp. Many thanks for their wonderful works.

Owner
Han GuangXin
Master student in IIAU lab of DLUT.
Han GuangXin
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation'

OD-Rec Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation' Paper, saved teacher models and Andro

Xin Xia 11 Nov 22, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
frida工具的缝合怪

fridaUiTools fridaUiTools是一个界面化整理脚本的工具。新人的练手作品。参考项目ZenTracer,觉得既然可以界面化,那么应该可以把功能做的更加完善一些。跨平台支持:win、mac、linux 功能缝合怪。把一些常用的frida的hook脚本简单统一输出方式后,整合进来。并且

diveking 997 Jan 09, 2023
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation

CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c

Deep Learning for HEP 101 Nov 13, 2022
π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis Project Page | Paper | Data Eric Ryan Chan*, Marco Monteiro*, Pe

375 Dec 31, 2022
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more

PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe

Ross Wightman 22.9k Jan 09, 2023
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022