Using pretrained language models for biomedical knowledge graph completion.

Overview

LMs for biomedical KG completion

This repository contains code to run the experiments described in:

Scientific Language Models for Biomedical Knowledge Base Completion: An Empirical Study (arXiv link)
Rahul Nadkarni, David Wadden, Iz Beltagy, Noah A. Smith, Hannaneh Hajishirzi, Tom Hope

Data

The edge splits we used for our experiments can be downloaded using the following links:

Link File size
RepoDB, transductive split 11 MB
RepoDB, inductive split 11 MB
Hetionet, transductive split 49 MB
Hetionet, inductive split 49 MB
MSI, transductive split 813 MB
MSI, inductive split 813 MB

Each of these filees should be placed in the subgraph directory before running any of the experiment scripts. Please see the README.md file in the subgraph directory for more information on the edge split files. If you would like to recreate the edge splits yourself or construct new edge splits, use the scripts titled script/create_*_dataset.py.

Environment

The environment.yml file contains all of the necessary packages to use this code. We recommend using Anaconda/Miniconda to set up an environment, which you can do with the command

conda-env create -f environment.yml

Entity names and descriptions

The files that contain entity names and descriptions for all of the datasets can be found in data/processed directory. If you would like to recreate these files yourself, you will need to use the scripts for each dataset found in data/script.

Pre-tokenization

The main training script for the LMs src/lm/run.py can take in pre-tokenized entity names and descriptions as input, and several of the training scripts in script/training are set up to do so. If you would like to pre-tokenize text before fine-tuning, follow the instructions in script/pretokenize.py. You can also pass in one of the .tsv files found in data/processed for the argument --info_filename instead of a file with pre-tokenized text.

Training

All of the scripts for training models can be found in the src directory. The script for training all KGE models is src/kge/run.py, while the script for training LMs is src/lm/run.py. Our code for training KGE models is heavily based on this code from the Open Graph Benchmark Github repository. Examples of how to use each of these scripts, including training with Slurm, can be found in the script/training directory. This directory includes all of the scripts we used to run the experiments for the results in the paper.

Owner
Rahul Nadkarni
Computer Science Ph.D. student
Rahul Nadkarni
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
Simple Dynamic Batching Inference

Simple Dynamic Batching Inference 解决了什么问题? 众所周知,Batch对于GPU上深度学习模型的运行效率影响很大。。。 是在Inference时。搜索、推荐等场景自带比较大的batch,问题不大。但更多场景面临的往往是稀碎的请求(比如图片服务里一次一张图)。 如果

116 Jan 01, 2023
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
ServiceX Transformer that converts flat ROOT ntuples into columnwise data

ServiceX_Uproot_Transformer ServiceX Transformer that converts flat ROOT ntuples into columnwise data Usage You can invoke the transformer from the co

Vis 0 Jan 20, 2022
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
A python module for configuration of block devices

Blivet is a python module for system storage configuration. CI status Licence See COPYING Installation From Fedora repositories Blivet is available in

78 Dec 14, 2022
🎁 3,000,000+ Unsplash images made available for research and machine learning

The Unsplash Dataset The Unsplash Dataset is made up of over 250,000+ contributing global photographers and data sourced from hundreds of millions of

Unsplash 2k Jan 03, 2023
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Yaoming Cai 5 Jul 18, 2022
Unofficial PyTorch Implementation of "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features"

Pytorch Implementation of Deep Orthogonal Fusion of Local and Global Features (DOLG) This is the unofficial PyTorch Implementation of "DOLG: Single-St

DK 96 Jan 06, 2023
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen

Rowel Atienza 5 Mar 04, 2022
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022