A study project using the AA-RMVSNet to reconstruct buildings from multiple images

Overview

3d-building-reconstruction

This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images.

Introduction

It is exciting to connect the 2D world with 3D world using Multi-view Stereo(MVS) methods. In this project, we aim to reconstruct several architecture in our campus. Since it's outdoor reconstruction, We chose to use AA-RMVSNet to do this work for its marvelous performance is outdoor datasets after comparing some similar models such as CasMVSNet and D2HC-RMVSNet. The code is retrieved from here with some modification.

Reproduction

Here we summarize the main steps we took when doing this project. You can reproduce our result after these steps.

Installation

First, you need to create a virtual environment and install the necessary dependencies.

conda create -n test python=3.6
conda activate test
conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=10.0 -c pytorch
conda install -c conda-forge py-opencv plyfile tensorboardx

Other cuda versions can be found here

Struct from Motion

Camera parameters are required to conduct the MVSNet based methods. Please first download the open source software COLMAP.

The workflow is as follow:

  1. Open the COLMAP, then successively click reconstruction-Automatic reconstruction options.
  2. Select your Workspace folder and Image folder.
  3. (Optional) Unclick Dense model to accelerate the reconstruction procedure.
  4. Click Run.
  5. After the completion of reconstruction, you should be able to see the result of sparse reconstruction as well as position of cameras.(Fig )
  6. Click File - Export model as text. There should be a camera.txt in the output folder, each line represent a photo. In case there are photos that remain mismatched, you should dele these photos and rematch. Repeat this process until all the photos are mathced.
  7. Move the there txts to the sparse folder.

img

AA-RMVSNet

To use AA-RMVSNet to reconstruct the building, please follow the steps listed below.

  1. Clone this repository to a local folder.

  2. The custom testing folder should be placed in the root directory of the cloned folder. This folder should have to subfolders names images and sparse. The images folder is meant to place the photos, and the sparse folder should have the three txt files recording the camera's parameters.

  3. Find the file list-dtu-test.txt, and write the name of the folder which you wish to be tested.

  4. Run colmap2mvsnet.py by

    python ./sfm/colmap2mvsnet.py --dense_folder name --interval_scale 1.06 --max_d 512
    

    The parameter dense_folder is compulsory, others being optional. You can also change the default value in the following shells.

  5. When you get the result of the previous step, run the following commands

    sh ./scripts/eval_dtu.sh
    sh ./scripts/fusion_dtu.sh
    
  6. Then you are should see the output .ply files in the outputs_dtu folder.

Here dtu means the data is organized in the format of DTU dataset.

Results

We reconstructed various spot of out campus. The reconstructed point cloud files is available here (Code: nz1e). You can visualize the file with Meshlab or CloudCompare .

PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

Irhum Shafkat 342 Dec 16, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
OpenMMLab Image and Video Editing Toolbox

Introduction MMEditing is an open source image and video editing toolbox based on PyTorch. It is a part of the OpenMMLab project. The master branch wo

OpenMMLab 3.9k Jan 04, 2023
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
SoGCN: Second-Order Graph Convolutional Networks

SoGCN: Second-Order Graph Convolutional Networks This is the authors' implementation of paper "SoGCN: Second-Order Graph Convolutional Networks" in Py

Yuehao 7 Aug 16, 2022
[ICLR'21] Counterfactual Generative Networks

This repository contains the code for the ICLR 2021 paper "Counterfactual Generative Networks" by Axel Sauer and Andreas Geiger. If you want to take the CGN for a spin and generate counterfactual ima

88 Jan 02, 2023
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022
[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Transform and Tell: Entity-Aware News Image Captioning This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and

Alasdair Tran 85 Dec 13, 2022
Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021
Hand gesture recognition model that can be used as a remote control for a smart tv.

Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon

Pratyush Negi 1 Aug 11, 2022
A repository for generating stylized talking 3D and 3D face

style_avatar A repository for generating stylized talking 3D faces and 2D videos. This is the repository for paper Imitating Arbitrary Talking Style f

Haozhe Wu 191 Dec 22, 2022
Image based Human Fall Detection

Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements

UTTEJ KUMAR 12 Dec 11, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
A package related to building quasi-fibration symmetries

qf A package related to building quasi-fibration symmetries. If you'd like to learn more about how it works, see the brief explanation and References

Paolo Boldi 1 Dec 01, 2021
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-

22 Sep 22, 2022
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022