Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Overview

Rainbow 🌈

An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less data. This was developed as part of an undergraduate university course on scientific research and writing. The results are also available as a spreadsheet here. A selection of videos is available here.

Key Changes and Results

  • We implemented the large IMPALA CNN with 2x channels from Espeholt et al. (2018).
  • The implementation uses large, vectorized environments, asynchronous environment interaction, mixed-precision training, and larger batch sizes to reduce training time.
  • Integrations and recommended preprocessing for >1000 environments from gym, gym-retro and procgen are provided.
  • Due to compute and time constraints, we only trained for 10M frames (compared to 200M in the paper).
  • We implemented all components apart from distributional RL (we saw mixed results with C51 and QR-DQN).

When trained for only 10M frames, this implementation outperforms:

google/dopamine trained for 10M frames on 96% of games
google/dopamine trained for 200M frames on 64% of games
Hessel, et al. (2017) trained for 200M frames on 40% of games
Human results on 72% of games

Most of the observed performance improvements compared to the paper come from switching to the IMPALA CNN as well as some hyperparameter changes (e.g. the 4x larger learning rate).

Setup

Install necessary prerequisites with

sudo apt install zlib1g-dev cmake unrar
pip install wandb gym[atari]==0.18.0 imageio moviepy torchsummary tqdm rich procgen gym-retro torch stable_baselines3 atari_py==0.2.9

If you intend to use gym Atari games, you will need to install these separately, e.g., by running:

wget http://www.atarimania.com/roms/Roms.rar 
unrar x Roms.rar
python -m atari_py.import_roms .

To set up gym-retro games you should follow the instructions here.

How to use

To get started right away, run

python train_rainbow.py --env_name gym:Qbert

This will train Rainbow on Atari Qbert and log all results to "Weights and Biases" and the checkpoints directory.

Please take a look at common/argp.py or run python train_rainbow.py --help for more configuration options.

Some Notes

  • With a single RTX 2080 and 12 CPU cores, training for 10M frames takes around 8-12 hours, depending on the used settings
  • About 15GB of RAM are required. When using a larger replay buffer or subprocess envs, memory use may be much higher
  • Hyperparameters can be configured through command line arguments; defaults can be found in common/argp.py
  • For fastest training throughput use batch_size=512, parallel_envs=64, train_count=1, subproc_vecenv=True

Acknowledgements

We are very grateful to the TU Wien DataLab for providing the majority of the compute resources that were necessary to perform the experiments.

Here are some other implementations and resources that were helpful in the completion of this project:

Owner
Dominik Schmidt
I'm a computer science & math student at the Vienna University of Technology in Austria.
Dominik Schmidt
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
A faster pytorch implementation of faster r-cnn

A Faster Pytorch Implementation of Faster R-CNN Write at the beginning [05/29/2020] This repo was initaited about two years ago, developed as the firs

Jianwei Yang 7.1k Jan 01, 2023
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Time-Sensitive-QA The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset

wenhu chen 35 Nov 14, 2022
FridaHookAppTool - Frida Hook App Tool With Python

FridaHookAppTool(以下是Hook mpaas框架的例子) mpaas移动开发框架ios端抓包hook脚本 使用方法:链接数据线,开启burp设置

13 Nov 30, 2022
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
Finding Donors for CharityML

Finding-Donors-for-CharityML - Investigated factors that affect the likelihood of charity donations being made based on real census data.

Moamen Abdelkawy 1 Dec 30, 2021
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
PyTorch Implementation of Realtime Multi-Person Pose Estimation project.

PyTorch Realtime Multi-Person Pose Estimation This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here Realtime_Multi-P

Dave Fang 157 Nov 12, 2022
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022