[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Overview

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction

FaceReconstructionDemo

Language grade: Python License ECCV

Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable 3D Dense Face Alignment via Tensorflow Lite framework, face mesh, head pose, landmarks, and more.

  • CPU real-time face deteciton, alignment, and reconstruction pipeline.
  • Lightweight render library, 5x faster (3ms vs 15ms) than the Sim3DR tools.
  • Camera matrix and dense/sparse landmarks prediction via a single network.
  • Generate facial parameters for robust head pose and expression estimation.

Setup

Basic Requirements

  • Python 3.6+
  • pip3 install -r requirements.txt

Render for Dense Face

  • GCC 6.0+
  • bash build_render.sh
  • (Cautious) For Windows user, please refer to this tutorial for more details.

3D Facial Landmarks

In this project, we perform dense face reconstruction by 3DMM parameters regression. The regression target is simplified as camera matrix (C, shape of 3x4), appearance parameters (S, shape of 1x40), and expression variables (E, shape of 1x10), with 62 dimensions in total.

The sparse or dense facial landmarks can be estimated by applying these parameters to a predefined 3D model, such as BFM. More specifically, the following formula describes how to generate a face through parameters:

Generate Face

where U and W are from pre-defined face model. Combine them linearly with parameters to generate sparse or dense faces. Finally, we need to integrate the posture information into the result:

With matrix

where R (shape of 3x3) and T (shape of 3x1) denote rotation and translation matrices, respectively, which are fractured from the camera matrix C.

Sparse

sparse demo

Since we have reconstructed the entire face, the 3D face alignment can be achieved by selecting the landmarks at the corresponding positions. See [TPAMI 2017] Face alignment in full pose range: A 3d total solution for more details.

Comparing with the method of first detecting 2D landmarks and then performing depth estimation, directly fitting 3DMM to solve 3D face alignment can not only obtain more accurate results in larger pose scenes, but also has obvious advantages in speed.

We provide a demonstration script that can generate 68 landmarks based on the reconstructed face. Run the following command to view the real-time 3D face alignment results:

python3 demo_video.py -m sparse -f <your-video-path>

Dense

dense demo

Currently, our method supports up to 38,365 landmarks. We draw landmarks every 6 indexes for a better illustration. Run the demonstrate script in dense mode for real-time dense facial landmark localization:

python3 demo_video.py -m dense -f <your-video-path>

Face Reconstruction

Our network is multi-task since it can directly regress 3DMM params from a single face image for reconstruction, as well as estimate the head pose via R and T prediction. During training, the predicted R can supervise the params regression branch to generate refined face mesh. Meanwhile, the landmarks calculated via the params are provided as the labeled data to the pose estimation branch for training, through the cv2.solvePnP tool.

Theoretically speaking, the head pose estimation task in our model is weakly supervised, since only a few labeled data is required to activate the training process. In detail, the loss function at the initial stage can be described as follows:

Init Pose Loss

After the initialization process, the ground truth can be replaced by the prediction results of other branches. Therefore, the loss function will be transformed to the following equation in the later stage of the training process:

Pose Loss

In general, fitting the 3D model during the training process dynamically can avoid the inaccurate head pose estimation results caused by the coarse predefined model.

Head Pose

pose demo

Traditional head pose estimation approaches, such as Appearance Template Models, Detector Arrays, and Mainfold Embedding have been extensively studied. However, methods based on deep learning improved the prediction accuracy to meet actual needs, until recent years.

Given a set of predefined 3D facial landmarks and the corresponding 2D image projections, the SolvePnP tool can be utilized to calculate the rotation matrix. However, the adopted mean 3D human face model usually introduces intrinsic error during the fitting process. Meanwhile, the additional landmarks extraction component is also kind of cumbersome.

Therefore, we designed a network branch for directly regress 6DoF parameters from the face image. The predictions include the 3DoF rotation matrix R (Pitch, Yaw, Roll), and the 3DoF translation matrix T (x, y, z), Compared with the landmark-based method, directly regression the camera matrix is more robust and stable, as well as significantly reduce the network training cost. Run the demonstrate script in pose mode to view the real-time head pose estimation results:

python3 demo_video.py -m pose -f <your-video-path>

Expression

Expression

Coarse expression estimation can be achieved by combining the predefined expressions in BFM linearly. In our model, regression the E is one of the tasks of the params prediction branch. Obviously, the accuracy of the linear combination is positively related to the dimension.

Clipping parameters can accelerate the training process, however, it can also reduce reconstruction accuracy, especially details such as eye and mouth. More specifically, E has a greater impact on face details than S when emotion is involved. Therefore, we choose 10-dimension for a tradeoff between the speed and the accuracy, the training data can be found at here for refinement.

In addition, we provide a simple facial expression rendering script. Run the following command for illustration:

python3 demo_image.py <your-image-path>

Mesh

mesh demo

According to the predefined BFM and the predicted 3DMM parameters, the dense 3D facial landmarks can be easily calculated. On this basis, through the index mapping between the morphable triangle vertices and the dense landmarks defined in BFM, the renderer can plot these geometries with depth infomation for mesh preview. Run the demonstrate script in mesh mode for real-time face reconstruction:

python3 demo_video.py -m mesh -f <your-video-path>

Benchmark

Our network can directly output the camera matrix and sparse or dense landmarks. Compared with the model in the original paper with the same backbone, the additional parameters yield via the pose regression branch does not significantly affect the inference speed, which means it can still be CPU real-time.

Scheme THREAD=1 THREAD=2 THREAD=4
Inference 7.79ms 6.88ms 5.83ms

In addition, since most of the operations are wrapped in the model, the time consumption of pre-processing and post-processing are significantly reduced. Meanwhile, the optimized lightweight renderer is 5x faster (3ms vs 15ms) than the Sim3DR tools. These measures decline the latency of the entire pipeline.

Stage Preprocess Inference Postprocess Render
Each face cost 0.23ms 7.79ms 0.39ms 3.92ms

Run the following command for speed benchmark:

python3 video_speed_benchmark.py <your-video-path>

Citation

@inproceedings{guo2020towards,
    title={Towards Fast, Accurate and Stable 3D Dense Face Alignment},
    author={Guo, Jianzhu and Zhu, Xiangyu and Yang, Yang and Yang, Fan and Lei, Zhen and Li, Stan Z},
    booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
    year={2020}
}
Comments
  • __init__() got an unexpected keyword argument 'num_threads'

    __init__() got an unexpected keyword argument 'num_threads'

    While running "python3 demo_video.py -m mesh -f I receive the following ERROR: File "demo_video.py", line 53, in main(args) File "demo_video.py", line 16, in main fa = service.DenseFaceReconstruction("weights/dense_face.tflite") File "/home/happy/PycharmProjects/Dense-Head-Pose-Estimation/service/TFLiteFaceAlignment.py", line 11, in init num_threads=num_threads) TypeError: init() got an unexpected keyword argument 'num_threads'

    opened by berylyellow 2
  • asset/render.so not found

    asset/render.so not found

    While running "python3 demo_video.py -m mesh -f I receive the following ERROR OSError: asset/render.so: cannot open shared object file: No such file or directory I can successfully run the other three modes (sparse, dense, pose)

    opened by fisakhan 2
  • How can i get Depth

    How can i get Depth

    hi, I want to get information about the depth of the face, how do I calculate it? i don't need rendering but only need depth map. like https://github.kakaocorp.com/data-sci/3DDFA_V2_tf2/blob/master/utils/depth.py thank you in advance!

    opened by joongkyunKim 1
  • there is no asset/render.so

    there is no asset/render.so

    Ignore above cudart dlerror if you do not have a GPU set up on your machine. Traceback (most recent call last): File "demo_video.py", line 53, in main(args) File "demo_video.py", line 18, in main color = service.TrianglesMeshRender("asset/render.so", File "/home/xuhao/workspace/Dense-Head-Pose-Estimation-main/service/CtypesMeshRender.py", line 17, in init self._clibs = ctypes.CDLL(clibs)

    opened by hitxuhao 1
  • asset/render.so: cannot open shared object file: No such file or director

    asset/render.so: cannot open shared object file: No such file or director

    It worked well with: $ python3 demo_video.py -m pose -f ./re.mp4 $python3 demo_video.py -m sparse -f ./re.mp4 $ python3 demo_video.py -m dense -f ./re.mp4

    but with mesh not as you see here:

    $python3 demo_video.py -m mesh -f ./re.mp4 2022-12-05 17:03:03.713207: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1 Traceback (most recent call last): File "demo_video.py", line 55, in main(args) File "demo_video.py", line 21, in main color = service.TrianglesMeshRender("asset/render.so", "asset/triangles.npy") File "/home/redhwan/2/HPE/tensorflow/Dense-Head-Pose-Estimation-main/service/CtypesMeshRender.py", line 17, in init self._clibs = ctypes.CDLL(clibs) File "/usr/lib/python3.8/ctypes/init.py", line 373, in init self._handle = _dlopen(self._name, mode) OSError: asset/render.so: cannot open shared object file: No such file or directory

    opened by Algabri 0
  • Memory usage

    Memory usage

    hi @1996scarlet

    Is it expected that the model uses around 18GB of video RAM? Or does it maximises the RAM available to help with speed? (I got a 24GB ram GPU, and usage goes up to 22.2GB while inferencing) Thanks for this amazing MIT license repo btw.

    opened by Tetsujinfr 0
Releases(v1.0)
  • v1.0(Feb 1, 2021)

    Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction

    • CPU real-time face deteciton, alignment, and reconstruction pipeline.
    • Lightweight render library, 5x faster (3ms vs 15ms) than the Sim3DR tools.
    • Camera matrix and dense/sparse landmarks prediction via a single network.
    • Generate facial parameters for robust head pose and expression estimation.
    Source code(tar.gz)
    Source code(zip)
Owner
Remilia Scarlet
Remilia Scarlet
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning

Rethinking the Value of Labels for Improving Class-Imbalanced Learning This repository contains the implementation code for paper: Rethinking the Valu

Yuzhe Yang 656 Dec 28, 2022
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646

[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.

46 Dec 14, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
A package for "Procedural Content Generation via Reinforcement Learning" OpenAI Gym interface.

Readme: Illuminating Diverse Neural Cellular Automata for Level Generation This is the codebase used to generate the results presented in the paper av

Sam Earle 27 Jan 05, 2023
Galileo library for large scale graph training by JD

近年来,图计算在搜索、推荐和风控等场景中获得显著的效果,但也面临超大规模异构图训练,与现有的深度学习框架Tensorflow和PyTorch结合等难题。 Galileo(伽利略)是一个图深度学习框架,具备超大规模、易使用、易扩展、高性能、双后端等优点,旨在解决超大规模图算法在工业级场景的落地难题,提

JD Galileo Team 128 Nov 29, 2022
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter

谷下雨 47 Dec 25, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Official Implementation of PCT

Official Implementation of PCT Prerequisites python == 3.8.5 Please make sure you have the following libraries installed: numpy torch=1.4.0 torchvisi

32 Nov 21, 2022
Pyramid Scene Parsing Network, CVPR2017.

Pyramid Scene Parsing Network by Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, details are in project page. Introduction This

Hengshuang Zhao 1.5k Jan 05, 2023