Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Overview

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks

This repository contains the official code for the paper Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks.

Requirements

This codebase has been tested with the following package versions:

python=3.8.8
torch=1.9.0+cu102
torchvision=0.10.0+cu102
PIL=8.1.0
numpy=1.19.2
scipy=1.6.1
tqdm=4.57.0
sklearn=0.24.1
albumentations=1.0.3

Prepare data

There are several classes defined in the datasets directory. The data is expected in a directory name data, located on the same level as this repository. Below is an outline of the expected file structure:

data/
    imagenet/
    CIFAR10/
    300W/
    ...
ssl-invariances/
    datasets/
    models/
    readme.md
    ...

For synthetic invariance evaluation, get the ILSVRC2012 validation data from https://image-net.org/ and store in ../data/imagenet/val/.

For real-world invariances, download the following datasets: Flickr1024, COIL-100, ALOI, ALOT, DaLI, ExposureErrors, RealBlur.

For extrinsic invariances, get Causal3DIdent.

Finally, our downstream datasets are CIFAR10, Caltech101, Flowers, 300W, CelebA, LSPose.

Pre-training models

We pre-train several models based on the MoCo codebase.

To set up a version of the codebase that can pre-train our models, first clone the MoCo repo onto the same level as this repo:

git clone https://github.com/facebookresearch/moco

This should be the resulting file structure:

data/
ssl-invariances/
moco/

Then copy the files from ssl-invariances/pretraining/ into the cloned repo:

cp ssl-invariances/pretraining/* moco/

Finally, to run our models, enter the cloned repo by cd moco and run one of the following:

# train the Default model
python main_moco.py -a resnet50 --model default --lr 0.03 --batch-size 256 --mlp --moco-t 0.2 --cos --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 ../data/imagenet

# train the Ventral model
python main_moco.py -a resnet50 --model ventral --lr 0.03 --batch-size 256 --mlp --moco-t 0.2 --cos --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 ../data/imagenet

# train the Dorsal model
python main_moco.py -a resnet50 --model dorsal --lr 0.03 --batch-size 256 --mlp --moco-t 0.2 --cos --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 ../data/imagenet

# train the Default(x3) model
python main_moco.py -a resnet50w3 --model default --moco-dim 384 --lr 0.03 --batch-size 256 --mlp --moco-t 0.2 --cos --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 ../data/imagenet

This will train the models for 200 epochs and save checkpoints. When training has completed, the final model checkpoint, e.g. default_00199.pth.tar, should be moved to ssl-invariances/models/default.pth.tarfor use in evaluation in the below code.

The rest of this codebase assumes these final model checkpoints are located in a directory called ssl-invariances/models/ as shown below.

ssl-invariances/
    models/
        default.pth.tar
        default_w3.pth.tar
        dorsal.pth.tar
        ventral.pth.tar

Synthetic invariance

To evaluate the Default model on grayscale invariance, run:

python eval_synthetic_invariance.py --model default --transform grayscale ../data/imagenet

This will compute the mean and covariance of the model's feature space and save these statistics in the results/ directory. These are then used to speed up future invariance computations for the same model.

Real-world invariance

To evaluate the Ventral model on COIL100 viewpoint invariance, run:

python eval_realworld_invariance.py --model ventral --dataset COIL100

Extrinsic invariance on Causal3DIdent

To evaluate the Dorsal model on Causal3DIdent object x position prediction, run:

python eval_causal3dident.py --model dorsal --target 0

Downstream performance

To evaluate the combined Def+Ven+Dor model on 300W facial landmark regression, run:

python eval_downstream.py --model default+ventral+dorsal --dataset 300w

Citation

If you find our work useful for your research, please consider citing our paper:

@misc{ericsson2021selfsupervised,
      title={Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks}, 
      author={Linus Ericsson and Henry Gouk and Timothy M. Hospedales},
      year={2021},
      eprint={2111.11398},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

If you have any questions, feel welcome to create an issue or contact Linus Ericsson ([email protected]).

Owner
Linus Ericsson
PhD student in the Data Science CDT at The University of Edinburgh
Linus Ericsson
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022
[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

This is the official implementation of our paper: Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-R

Bowen Wen 199 Jan 04, 2023
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
Checking fibonacci - Generating the Fibonacci sequence is a classic recursive problem

Fibonaaci Series Generating the Fibonacci sequence is a classic recursive proble

Moureen Caroline O 1 Feb 15, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Microsoft 125 Jan 04, 2023
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022
LBK 35 Dec 26, 2022
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
Automatic self-diagnosis program (python required)Automatic self-diagnosis program (python required)

auto-self-checker 자동으로 자가진단 해주는 프로그램(python 필요) 중요 이 프로그램이 실행될때에는 절대로 마우스포인터를 움직이거나 키보드를 건드리면 안된다(화면인식, 마우스포인터로 직접 클릭) 사용법 프로그램을 구동할 폴더 내의 cmd창에서 pip

1 Dec 30, 2021
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
Code Repo for the ACL21 paper "Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning"

Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning This is the Github repository of our paper, "Common S

INK Lab @ USC 19 Nov 30, 2022
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021