AugLiChem - The augmentation library for chemical systems.

Overview

AugLiChem

Build Status codecov

Welcome to AugLiChem! The augmentation library for chemical systems. This package supports augmentation for both crystaline and molecular systems, as well as provides automatic downloading for our benchmark datasets, and easy to use model implementations. In depth documentation about how to use AugLiChem, make use of transformations, and train models is given on our website.

Installation

AugLiChem is a python3.8+ package.

Linux

It is recommended to use an environment manager such as conda to install AugLiChem. Instructions can be found here. If using conda, creating a new environment is ideal and can be done simply by running the following command:

conda create -n auglichem python=3.8

Then activating the new environment with

conda activate auglichem

AugLiChem is built primarily with pytorch and that should be installed independently according to your system specifications. After activating your conda environment, pytorch can be installed easily and instructions are found here.

torch_geometric needs to be installed with conda install pyg -c pyg -c conda-forge.

Once you have pytorch and torch_geometric installed, installing AugLiChem can be done using PyPI:

pip install auglichem

MacOS ARM64 Architecture

A more involved install is required to run on the new M1 chips since some of the packages do not have official support yet. We are working on a more elegant solution given the current limitations.

First, download this repo.

If you do not have it yet,, conda for ARM64 architecture needs to be installed. This can be done with Miniforge (which contains conda installer) which is installed by following the guide here

Once you have miniforge compatible with ARM64 architecture, a new environment with rdkit can be i nstalled. If you do not specify python=3.8 it will default to python=3.9.6 as of the time of writing th is.

conda create -n auglichem python=3.8 rdkit

Now activate the environment:

conda activate auglichem

From here, individual packages can be installed:

conda install -c pytorch pytorch

conda install -c fastchan torchvision

conda install scipy

conda install cython

conda install scikit-learn

pip install torch-scatter -f https://data.pyg.org/whl/torch-1.10.0+cpu.html

pip install torch-sparse -f https://data.pyg.org/whl/torch-1.10.0+cpu.html

pip install torch-geometric

Before installing the package, you must go into setup.py in the main directory and comment out rdkit-pypi and tensorboard from the install_requires list since they are already installed. Not commenting these packages out will result in an error during installation.

Finally, run:

pip install .

Usage guides are provided in the examples/ directory and provide useful guides for using both the molecular and crystal sides of the package. Make sure to install jupyter before working with examples, using conda install jupyter. After installing the package as described above, the example notebooks can be downloaded separately and run locally.

Authors

Rishikesh Magar*, Yuyang Wang*, Cooper Lorsung*, Hariharan Ramasubramanian, Chen Liang, Peiyuan Li, Amir Barati Farimani

*Equal contribution

Paper

Our paper can be found here

Citation

If you use AugLiChem in your work, please cite:

@misc{magar2021auglichem,
      title={AugLiChem: Data Augmentation Library ofChemical Structures for Machine Learning}, 
      author={Rishikesh Magar and Yuyang Wang and Cooper Lorsung and Chen Liang and Hariharan Ramasubramanian and Peiyuan Li and Amir Barati Farimani},
      year={2021},
      eprint={2111.15112},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

License

AugLiChem is MIT licensed, as found in the LICENSE file. Please note that some of the dependencies AugLiChem uses may be licensed under different terms.

Owner
BaratiLab
BaratiLab
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage

Phil Wang 876 Dec 29, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

68 Dec 09, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 04, 2023
Gym environment for FLIPIT: The Game of "Stealthy Takeover"

gym-flipit Gym environment for FLIPIT: The Game of "Stealthy Takeover" invented by Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L. Rivest. Desi

Lisa Oakley 2 Dec 15, 2021
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
[CVPR 2019 Oral] Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation

SelectionGAN for Guided Image-to-Image Translation CVPR Paper | Extended Paper | Guided-I2I-Translation-Papers Citation If you use this code for your

Hao Tang 424 Dec 02, 2022
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
codebase for "A Theory of the Inductive Bias and Generalization of Kernel Regression and Wide Neural Networks"

Eigenlearning This repo contains code for replicating the experiments of the paper A Theory of the Inductive Bias and Generalization of Kernel Regress

Jamie Simon 45 Dec 02, 2022
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
Vision-Language Pre-training for Image Captioning and Question Answering

VLP This repo hosts the source code for our AAAI2020 work Vision-Language Pre-training (VLP). We have released the pre-trained model on Conceptual Cap

Luowei Zhou 373 Jan 03, 2023
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)

PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition. Transformer models are good at capturing content-based

Soohwan Kim 565 Jan 04, 2023