Code for our CVPR2021 paper coordinate attention

Overview

Coordinate Attention for Efficient Mobile Network Design (preprint)

This repository is a PyTorch implementation of our coordinate attention (will appear in CVPR2021).

Our coordinate attention can be easily plugged into any classic building blocks as a feature representation augmentation tool. Here (pytorch-image-models) is a code base that you might want to train a classification model on ImageNet.

Note that the results reported in the paper are based on regular training setting (200 training epochs, random crop, and cosine learning schedule) without using extra label smoothing, random augmentation, random erasing, mixup. For specific numbers in ImageNet classification, COCO object detection, and semantic segmentation, please refer to our paper.

Comparison to Squeeze-and-Excitation block and CBAM

diagram

(a) Squeeze-and-Excitation block (b) CBAM (C) Coordinate attention block

How to plug the proposed CA block in the inverted residual block and the sandglass block

wheretoplug

(a) MobileNetV2 (b) MobileNeXt

Some tips for designing lightweight attention blocks

  • SiLU activation (h_swish in the code) works better than ReLU6
  • Either horizontal or vertical direction attention performs the same to the SE attention
  • When applied to MobileNeXt, adding the attention block after the first depthwise 3x3 convolution works better
  • Note sure whether the results would be better if a softmax is applied between the horizontal and vertical features

Object detection

We use this repo (ssdlite-pytorch-mobilenext).

Semantic segmentation

We use this repo. You can also refer to mmsegmentation alternatively.

Citation

You may want to cite:

@inproceedings{hou2021coordinate,
  title={Coordinate Attention for Efficient Mobile Network Design},
  author={Hou, Qibin and Zhou, Daquan and Feng, Jiashi},
  booktitle={CVPR},
  year={2021}
}

@inproceedings{sandler2018mobilenetv2,
  title={Mobilenetv2: Inverted residuals and linear bottlenecks},
  author={Sandler, Mark and Howard, Andrew and Zhu, Menglong and Zhmoginov, Andrey and Chen, Liang-Chieh},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={4510--4520},
  year={2018}
}

@inproceedings{zhou2020rethinking,
  title={Rethinking bottleneck structure for efficient mobile network design},
  author={Zhou, Daquan and Hou, Qibin and Chen, Yunpeng and Feng, Jiashi and Yan, Shuicheng}
  booktitle={ECCV},
  year={2020}
}

@inproceedings{hu2018squeeze,
  title={Squeeze-and-excitation networks},
  author={Hu, Jie and Shen, Li and Sun, Gang},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={7132--7141},
  year={2018}
}

@inproceedings{woo2018cbam,
  title={Cbam: Convolutional block attention module},
  author={Woo, Sanghyun and Park, Jongchan and Lee, Joon-Young and Kweon, In So},
  booktitle={Proceedings of the European conference on computer vision (ECCV)},
  pages={3--19},
  year={2018}
}
Owner
Qibin (Andrew) Hou
Research fellow at NUS.
Qibin (Andrew) Hou
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Vansh Wassan 15 Jun 17, 2021
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork đź‘€ : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023
Development Kit for the SoccerNet Challenge

SoccerNetv2-DevKit Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started w

Silvio Giancola 117 Dec 30, 2022
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》

SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the

7 Oct 26, 2022