NR-GAN: Noise Robust Generative Adversarial Networks

Related tags

Deep LearningNR-GAN
Overview

NR-GAN: Noise Robust Generative Adversarial Networks (CVPR 2020)

This repository provides PyTorch implementation for noise robust GAN (NR-GAN). NR-GAN is unique in that it can learn a clean image generator even when only noisy images are available for training.

NR-GAN examples

Note: In our previous studies, we have also proposed GANs for label noise. Please check them from the links below.

Paper

Noise Robust Generative Adversarial Networks. Takuhiro Kaneko and Tatsuya Harada. In CVPR, 2020.

[Paper] [Project] [Slides] [Video]

Installation

Clone this repo:

git clone https://github.com/takuhirok/NR-GAN.git
cd NR-GAN/

First, install Python 3+. Then install PyTorch 1.3 and other dependencies by the following:

pip install -r requirements.txt

Training

To train a model, use the following script:

bash ./scripts/train.sh [dataset] [model] [output_directory_path]

Example

To train SI-NR-GAN-I (sinrgan1) on CIFAR-10 with additive Gaussian noise with a fixed standard deviation (cifar10ag25), run the following:

bash ./scripts/train.sh cifar10ag25 sinrgan1 outputs

The results are saved into outputs.

Note: In our experiments, we report the best model encountered during training to mitigate the performance fluctuation caused by GAN training instability.

Options

Regarding [dataset], choose one option among the following:

  • cifar10: No noise
  • cifar10ag25: (A) Additive Gaussian noise with a fixed standard deviation
  • cifar10ag5-50: (B) Additive Gaussian noise with a variable standard deviation
  • cifar10lg25p16: (C) Local Gaussian noise with a fixed-size patch
  • cifar10lg25p8-24: (D) Local Gaussian noise with a variable-size patch
  • cifar10u50: (E) Uniform noise
  • cifar10mix: (F) Mixture noise
  • cifar10bg25k5: (G) Brown Gaussian noise
  • cifar10abg25k5: (H) Sum of (A) and (G)
  • cifar10mg25: (I) Multiplicative Gaussian noise with a fixed standard deviation
  • cifar10mg5-50: (J) Multiplicative Gaussian noise with a variable standard deviation
  • cifar10amg5_25: (K) Sum of few (A) and (I)
  • cifar10amg25_25: (L) Sum of much (A) and (I)
  • cifar10p30: (M) Poisson noise with a fixed total number of events
  • cifar10p10-50: (N) Poisson noise with a variable total number of events
  • cifar10pg30_5: (O) Sum of (M) and few (A)
  • cifar10pg30_25: (P) Sum of (M) and much (A)

Noise examples

Regarding [model], choose one option among the following:

  • gan: GAN
  • ambientgan: AmbientGAN
  • sinrgan1: SI-NR-GAN-I
  • sinrgan2: SI-NR-GAN-II
  • sdnrgan1: SD-NR-GAN-I
  • sdnrgan2: SD-NR-GAN-II
  • sdnrgan3: SD-NR-GAN-III

Examples of generated images

CIFAR-10 with additive Gaussian noise

cifar10ag25: (A) Additive Gaussian noise with a fixed standard deviation

Examples of generated images on CIFAR-10 with additive Gaussian noise

AmbientGAN is trained with the ground-truth noise model, while the other models are trained without full knowledge of the noise (i.e., the noise distribution type and noise amount).

CIFAR-10 with multiplicative Gaussian noise

cifar10mg25: (I) Multiplicative Gaussian noise with a fixed standard deviation

Examples of generated images on CIFAR-10 with multiplicative Gaussian noise

AmbientGAN is trained with the ground-truth noise model, while the other models are trained without full knowledge of the noise (i.e., the noise distribution type, noise amount, and signal-noise relationship).

Citation

If you find this work useful for your research, please cite our paper.

@inproceedings{kaneko2020NR-GAN,
  title={Noise Robust Generative Adversarial Networks},
  author={Kaneko, Takuhiro and Harada, Tatsuya},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2020}
}

Related work

  1. A. Bora, E. Price, A. G. Dimakis. AmbientGAN: Generative Models from Lossy Measurements. In ICLR, 2018.
  2. T. Kaneko, Y. Ushiku, T. Harada. Label-Noise Robust Generative Adversarial Networks. In CVPR, 2019.
  3. T. Kaneko, Y. Ushiku, T. Harada. Class-Distinct and Class-Mutual Image Generation with GANs. In BMVC, 2019.
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context Code in both PyTorch and TensorFlow

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Jan 06, 2023
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
This project is used for the paper Differentiable Programming of Isometric Tensor Network

This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)

Chenhua Geng 15 Dec 13, 2022
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

1.1k Jan 01, 2023
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022
Automated detection of anomalous exoplanet transits in light curve data.

Automatically detecting anomalous exoplanet transits This repository contains the source code for the paper "Automatically detecting anomalous exoplan

1 Feb 01, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Deep Insight 13.2k Jan 06, 2023
Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Python-for-Epidemiologists This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are

Paul Zivich 120 Nov 17, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
This is the workbook I created while I was studying for the Qiskit Associate Developer exam. I hope this becomes useful to others as it was for me :)

A Workbook for the Qiskit Developer Certification Exam Hello everyone! This is Bartu, a fellow Qiskitter. I have recently taken the Certification exam

Bartu Bisgin 66 Dec 10, 2022