An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Overview

SensatUrban-BEV-Seg3D

This is the official implementation of our BEV-Seg3D-Net, an efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Features of our framework/model:

  • leveraging various proven methods in 2D segmentation for 3D tasks
  • achieve competitive performance in the SensatUrban benchmark
  • fast inference process, about 1km^2 area per minute with RTX 3090.

To be done:

  • add more complex/efficient fusion models
  • add more backbone like ResNeXt, HRNet, DenseNet, etc.
  • add more novel projection methods like pointpillars

For technical details, please refer to:

Efficient Urban-scale Point Clouds Segmentation with BEV Projection
Zhenhong Zou, Yizhe Li, Xinyu Zhang

(1) Setup

This code has been tested with Python 3.7, PyTorch 1.8, CUDA 11.0 on Ubuntu 16.04. PyTorch of earlier versions should be supported.

  • Clone the repository
git clone https://github.com/zouzhenhong98/SensatUrban-BEV-Seg3D.git & cd SensatUrban-BEV-Seg3D
  • Setup python environment
conda create -n bevseg python=3.7
source activate bevseg
pip install -r requirements.txt

(2) Preprocess

We provide various data analysis and preprocess methods for the SensatUrban dataset. (Part of the following steps are optional)

  • Before data generation, change the path_to_your_dataset in preprocess/point_EDA_31.py by:
Sensat = SensatUrbanEDA()
Sensat.root_dir = 'path_to_your_dataset'
Sensat.split = 'train' # change to 'test' for inference
  • Initialize the BEV projection arguments. We provide our optimal setting below, but you can set other values for analysis:
Sensat.grids_scale = 0.05
Sensat.grids_size = 25
Sensat.grids_step = 25
  • (Optional) If you want to test the sliding window points generator:
data_dir = os.path.join(self.root_dir, self.split)
ply_list = sorted(os.listdir(data_dir))[0]
ply_path = os.path.join(data_dir, ply_name)
ply_data = self.load_points(ply_path, reformat=True)
grids_data = self.grid_generator(ply_data, self.grids_size, self.grids_step, False) # return an Iterator
  • Calculating spatial overlap ratio in BEV projection:
Sensat.single_ply_analysis(Sensat.exp_point_overlay_count) # randomly select one ply file
Sensat.batch_ply_analysis(Sensat.exp_point_overlay_count) # for all ply files in the path
  • Calculating class overlap ratio in BEV projection, that means we ignore overlapped points belonging to the same category:
Sensat.single_ply_analysis(Sensat.exp_class_overlay_count) # randomly select one ply file
Sensat.batch_ply_analysis(Sensat.exp_class_overlay_count) # for all ply files in the path
  • Test BEV projection and 3D remapping with IoU index test (reflecting the consistency in 3D Segmentation and BEV Segmentation tasks):
Sensat.evaluate('offline', Sensat.map_offline_img2pts)
  • BEV data generation:
Sensat.batch_ply_analysis(Sensat.exp_gen_bev_projection)
  • Point Spatial Overlap Ratio Statistics at different projection scales

  • More BEV projection testing results refers to our sample images: completion test at imgs/completion_test, edge detection with different CV operators at imgs/edge_detection, rgb and label projection samples at imgs/projection_sample

(3) Training & Inference

We provide two basic multimodal fusion network developped from U-Net in the modeling folder, unet.py is the basic feature fusion, and uneteca.py is the attention fusion.

  • Change the path_to_your_dataset in mypath.py and dataloaders/init.py >>> 'cityscapes'

  • Train from sratch

python train.py --use-balanced-weights --batch-size 8 --base-size 500 --crop-size 500 --loss-type focal --epochs 200 --eval-interval 1
  • Change the save_dir in inference.py

  • Inference on test data

python inference.py --batch-size 8
  • Prediction Results Visualization (RGB, altitude, label, prediction)

(4) Evaluation

  • Remap your BEV prediction to 3D and evaluate in 3D benchmark in preprocess/point_EDA_31.py (following the prvious initialization steps):
Sensat.evaluate_batch(Sensat.evaluate_batch_nn(Sensat.eval_offline_img2pts))

(5) Citation

If you find our work useful in your research, please consider citing: (Information is coming soon! We are asking the open-access term of the conference!)

(6) Acknowledgment

  • Part of our data processing code (read_ply and metrics) is developped based on https://github.com/QingyongHu/SensatUrban
  • Our code of neural network is developped based on a U-Net repo from the github, but unfortunately we are unable to recognize the raw github repo. Please tell us if you can help.

(7) Related Work

To learn more about our fusion segmentation methods, please refers to our previous work:

@article{Zhang2021ChannelAI,
    title={Channel Attention in LiDAR-camera Fusion for Lane Line Segmentation},
    author={Xinyu Zhang and Zhiwei Li and Xin Gao and Dafeng Jin and Jun Li},
    journal={Pattern Recognit.},
    year={2021},
    volume={118},
    pages={108020}
}

@article{Zou2021ANM,
    title={A novel multimodal fusion network based on a joint coding model for lane line segmentation},
    author={Zhenhong Zou and Xinyu Zhang and Huaping Liu and Zhiwei Li and A. Hussain and Jun Li},
    journal={ArXiv},
    year={2021},
    volume={abs/2103.11114}
}
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
Reimplementation of Learning Mesh-based Simulation With Graph Networks

Pytorch Implementation of Learning Mesh-based Simulation With Graph Networks This is the unofficial implementation of the approach described in the pa

Jingwei Xu 33 Dec 14, 2022
A complete, self-contained example for training ImageNet at state-of-the-art speed with FFCV

ffcv ImageNet Training A minimal, single-file PyTorch ImageNet training script designed for hackability. Run train_imagenet.py to get... ...high accur

FFCV 92 Dec 31, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation CVPR2021(oral) [arxiv] Requirements python3.7 pytorch==

W-zx-Y 85 Dec 07, 2022
The repository contain code for building compiler using puthon.

Building Compiler This is a python implementation of JamieBuild's "Super Tiny Compiler" Overview JamieBuilds developed a wonderfully educative compile

Shyam Das Shrestha 1 Nov 21, 2021
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain

TargetAllDomainObjects A python wrapper to run a command on against all users/co

Podalirius 19 Dec 13, 2022
Anime Face Detector using mmdet and mmpose

Anime Face Detector This is an anime face detector using mmdetection and mmpose. (To avoid copyright issues, I use generated images by the TADNE model

198 Jan 07, 2023
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

46 Nov 06, 2022