Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Overview

Fully Adversarial Mosaics (FAMOS)

Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Image Stylization" available at http://arxiv.org/abs/1811.09236.

This code allows to generate image stylisation using an adversarial approach combining parametric and non-parametric elements. Tested to work on Ubuntu 16.04, Pytorch 0.4, Python 3.6. Nvidia GPU p100. It is recommended to have a GPU with 12, 16GB, or more of VRAM.

Parameters

Our method has many possible settings. You can specify them with command-line parameters. The options parser that defines these parameters is in the config.py file and the options are parsed there. You are free to explore them and discover the functionality of FAMOS, which can cover a very broad range of image stylization settings.

There are 5 groups of parameter types:

  • data path and loading parameters
  • neural network parameters
  • regularization and loss criteria weighting parameters
  • optimization parameters
  • parameters of the stochastic noise -- see PSGAN

Update Febr. 2019: video frame-by-frame rendering supported

mosaicGAN.py can now render a whole folder of test images with the trained model. Example videos: lion video with Münich and Berlin

Just specify

python mosaicGAN.py --texturePath=samples/milano/ --contentPath=myFolder/ --testImage=myFolder/ 

with your myFolder and all images from that folder will be rendered by the generator of the GAN. Best to use the same test folder as content folder for training. To use in a video editing pipeline, save all video frames as images with a tool like AVIDEMUX, train FAMOS and save rendered frames, assemble again as video. Note: this my take some time to render thousands of images, you can edit in the code VIDEO_SAVE_FREQ to render the test image folder less frequently.

Update Jan. 2019: new functionality for texture synthesis

Due to interest in a new Pytorch implementation of our last paper "Texture Synthesis with Spatial Generative Adversarial Networks" (PSGAN) we added a script reimplementing it in the current repository. It shares many components with the texture mosaic stylization approach. A difference: PSGAN has no content image and loss, the generator is conditioned only on noise. Example call for texture synthesis:

python PSGAN.py --texturePath=samples/milano/ --ngf=120 --zLoc=50 --ndf=120 --nDep=5 --nDepD=5 --batchSize=16

In general, texture synthesis is much faster than the other methods in this repository, so feel free to add more channels and increase th batchsize. For more details and inspiration how to play with texture synthesis see our old repository with Lasagne code for PSGAN.

Usage: parametric convolutional adversarial mosaic

We provide scripts that have a main loop in which we (i) train an adversarial stylization model and (ii) save images (inference mode). If you need it, you can easily modify the code to save a trained model and load it later to do inference on many other images, see comments at the end of mosaicGAN.py.

In the simplest case, let us start an adversarial mosaic using convolutional networks. All you need is to specify the texture and content folders:

python mosaicGAN.py --texturePath=samples/milano/ --contentPath=samples/archimboldo/

This repository includes sample style files (4 satellite views of Milano, from Google Maps) and a portrait of Archimboldo (from the Google Art Project). Our GAN method will start running and training, occasionally saving results in "results/milano/archimboldo/" and printing the loss values to the terminal. Note that we use the first image found in contentPath as the default full-size output image stylization from FAMOS. You can also specify another image file name testImage to do out-of-sample stylization (inference).

This version uses DCGAN by default, which works nicely for the convolutional GAN we have here. Add the parameter LS for a least squares loss, which also works nicely. Interestingly, WGAN-GP is poorer for our model, which we did not investigate in detail.

If you want to tune the optimisation and model, you can adjust the layers and channels of the Generator and Discriminator, and also choose imageSize and batchSize. All this will effect the speed and performance of the model. You can also tweak the correspondance map cLoss and the content loss weighting fContent

python mosaicGAN.py --texturePath=samples/milano/ --contentPath=samples/archimboldo/ --imageSize=192 --batchSize=8 --ngf=80 --ndf=80  --nDepD=5  --nDep=4 --cLoss=101 --fContent=.6

Other interesting options are skipConnections and Ubottleneck. By disabling the skip connections of the Unet and defining a smaller bottleneck we can reduce the effect of the content image and emphasize more the texture style of the output.

Usage: the full FAMOS approach with parametric and non-parametric aspects

Our method has the property of being able to copy pixels from template images together with the convolutional generation of the previous section.

python mosaicFAMOS.py  --texturePath=samples/milano/ --contentPath=samples/archimboldo/ --N=80 --mirror=True --dIter=2 --WGAN=True

Here we specify N=80 memory templates to copy from. In addition, we use mirror augmentation to get nice kaleidoscope-like effects in the template (and texture distribution). We use the WGAN GAN criterium, which works better for the combined parametric/non-parametric case (experimenting with the usage of DCGAN and WGAN depending on the architecture is advised). We set to use dIter=2 D steps for each G step.

The code also supports a slightly more complicated implementation than the one described in the paper. By setting multiScale=True a mixed template of images I_M on multiple levels of the Unet is used. In addition, by setting nBlocks=2 we will add residual layers to the decoder of the Unet, for a model with even higher capacity. Finally, you can also set refine=True and add a second Unet to refine the results of the first one. Of course, all these additional layers come at a computational cost -- selecting the layer depth, channel width, and the use of all these additional modules is a matter of trade-off and experimenting.

python mosaicFAMOS.py  --texturePath=samples/milano/ --contentPath=samples/archimboldo/ --N=80 --mirror=True --multiScale=True --nBlocks=1 --dIter=2 --WGAN=True

The method will save mosaics occasionally, and optionally you can specify a testImage (size smaller than the initial content image) to check out-of-sample performance. You can check the patches image saved regularly how the patch based training proceeds. The files has a column per batch-instance, and 6 rows showing the quantities from the paper:

  • I_C content patch
  • I_M mixed template patch on highest scale
  • I_G parametric generation component
  • I blended patch
  • \alpha blending mask
  • A mixing matrix

License

Please make sure to cite/acknowledge our paper, if you use any of the contained code in your own projects or publication.

The MIT License (MIT)

Copyright © 2018 Zalando SE, https://tech.zalando.com

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Owner
Zalando Research
Repositories of the research branch of Zalando SE
Zalando Research
A machine learning project that predicts the price of used cars in the UK

Car Price Prediction Image Credit: AA Cars Project Overview Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup. Cleaned t

Victor Umunna 7 Oct 13, 2022
Dive into Machine Learning

Dive into Machine Learning Hi there! You might find this guide helpful if: You know Python or you're learning it 🐍 You're new to Machine Learning You

Michael Floering 11.1k Jan 03, 2023
Implementations of Machine Learning models, Regularizers, Optimizers and different Cost functions.

Linear Models Implementations of LinearRegression, LassoRegression and RidgeRegression with appropriate Regularizers and Optimizers. Linear Regression

Keivan Ipchi Hagh 1 Nov 22, 2021
Napari sklearn decomposition

napari-sklearn-decomposition A simple plugin to use with napari This napari plug

1 Sep 01, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Jan 05, 2023
Machine-care - A simple python script to take care of simple maintenance tasks

Machine care An simple python script to take care of simple maintenance tasks fo

2 Jul 10, 2022
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

Daniel Formoso 5.7k Dec 30, 2022
Uses WiFi signals :signal_strength: and machine learning to predict where you are

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Pascal van Kooten 5k Jan 09, 2023
The Simpsons and Machine Learning: What makes an Episode Great?

The Simpsons and Machine Learning: What makes an Episode Great? Check out my Medium article on this! PROBLEM: The Simpsons has had a decline in qualit

1 Nov 02, 2021
A linear regression model for house price prediction

Linear_Regression_Model A linear regression model for house price prediction. This code is using these packages, so please make sure your have install

ShawnWang 1 Nov 29, 2021
Data Version Control or DVC is an open-source tool for data science and machine learning projects

Continuous Machine Learning project integration with DVC Data Version Control or DVC is an open-source tool for data science and machine learning proj

Azaria Gebremichael 2 Jul 29, 2021
Open-Source CI/CD platform for ML teams. Deliver ML products, better & faster. ⚡️🧑‍🔧

Deliver ML products, better & faster Giskard is an Open-Source CI/CD platform for ML teams. Inspect ML models visually from your Python notebook 📗 Re

Giskard 335 Jan 04, 2023
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
MiniTorch - a diy teaching library for machine learning engineers

This repo is the full student code for minitorch. It is designed as a single repo that can be completed part by part following the guide book. It uses

1.1k Jan 07, 2023
My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data

kNN-vs-RFR My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data In many areas, rental bikes have been launched to

1 Oct 28, 2021
Book Item Based Collaborative Filtering

Book-Item-Based-Collaborative-Filtering Collaborative filtering methods are used

Şebnem 3 Jan 06, 2022
LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate.

LibRerank LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRer

126 Dec 28, 2022
An easier way to build neural search on the cloud

Jina is geared towards building search systems for any kind of data, including text, images, audio, video and many more. With the modular design & multi-layer abstraction, you can leverage the effici

Jina AI 17k Jan 01, 2023
30 Days Of Machine Learning Using Pytorch

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

Mayur 119 Nov 24, 2022
SynapseML - an open source library to simplify the creation of scalable machine learning pipelines

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022