Global Filter Networks for Image Classification

Overview

Global Filter Networks for Image Classification

Created by Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, Jie Zhou

This repository contains PyTorch implementation for GFNet.

Global Filter Networks is a transformer-style architecture that learns long-term spatial dependencies in the frequency domain with log-linear complexity. Our architecture replaces the self-attention layer in vision transformers with three key operations: a 2D discrete Fourier transform, an element-wise multiplication between frequency-domain features and learnable global filters, and a 2D inverse Fourier transform.

intro

Our code is based on pytorch-image-models and DeiT.

[Project Page] [arXiv]

Global Filter Layer

GFNet is a conceptually simple yet computationally efficient architecture, which consists of several stacking Global Filter Layers and Feedforward Networks (FFN). The Global Filter Layer mixes tokens with log-linear complexity benefiting from the highly efficient Fast Fourier Transform (FFT) algorithm. The layer is easy to implement:

import torch
import torch.nn as nn
import torch.fft

class GlobalFilter(nn.Module):
    def __init__(self, dim, h=14, w=8):
        super().__init__()
        self.complex_weight = nn.Parameter(torch.randn(h, w, dim, 2, dtype=torch.float32) * 0.02)
        self.w = w
        self.h = h

    def forward(self, x):
        B, H, W, C = x.shape
        x = torch.fft.rfft2(x, dim=(1, 2), norm='ortho')
        weight = torch.view_as_complex(self.complex_weight)
        x = x * weight
        x = torch.fft.irfft2(x, s=(H, W), dim=(1, 2), norm='ortho')
        return x

Compared to self-attention and spatial MLP, our Global Filter Layer is much more efficient to process high-resolution feature maps:

efficiency

Model Zoo

We provide our GFNet models pretrained on ImageNet:

name arch Params FLOPs [email protected] [email protected] url
GFNet-Ti gfnet-ti 7M 1.3G 74.6 92.2 Tsinghua Cloud / Google Drive
GFNet-XS gfnet-xs 16M 2.8G 78.6 94.2 Tsinghua Cloud / Google Drive
GFNet-S gfnet-s 25M 4.5G 80.0 94.9 Tsinghua Cloud / Google Drive
GFNet-B gfnet-b 43M 7.9G 80.7 95.1 Tsinghua Cloud / Google Drive
GFNet-H-Ti gfnet-h-ti 15M 2.0G 80.1 95.1 Tsinghua Cloud / Google Drive
GFNet-H-S gfnet-h-s 32M 4.5G 81.5 95.6 Tsinghua Cloud / Google Drive
GFNet-H-B gfnet-h-b 54M 8.4G 82.9 96.2 Tsinghua Cloud / Google Drive

Usage

Requirements

  • torch>=1.8.1
  • torchvision
  • timm

Data preparation: download and extract ImageNet images from http://image-net.org/. The directory structure should be

│ILSVRC2012/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Evaluation

To evaluate a pre-trained GFNet model on the ImageNet validation set with a single GPU, run:

python infer.py --data-path /path/to/ILSVRC2012/ --arch arch_name --path /path/to/model

Training

ImageNet

To train GFNet models on ImageNet from scratch, run:

python -m torch.distributed.launch --nproc_per_node=8 --use_env main_gfnet.py  --output_dir logs/gfnet-xs --arch gfnet-xs --batch-size 128 --data-path /path/to/ILSVRC2012/

To finetune a pre-trained model at higher resolution, run:

python -m torch.distributed.launch --nproc_per_node=8 --use_env main_gfnet.py  --output_dir logs/gfnet-xs-img384 --arch gfnet-xs --input-size 384 --batch-size 64 --data-path /path/to/ILSVRC2012/ --lr 5e-6 --weight-decay 1e-8 --min-lr 5e-6 --epochs 30 --finetune /path/to/model

Transfer Learning Datasets

To finetune a pre-trained model on a transfer learning dataset, run:

python -m torch.distributed.launch --nproc_per_node=8 --use_env main_gfnet_transfer.py  --output_dir logs/gfnet-xs-cars --arch gfnet-xs --batch-size 64 --data-set CARS --data-path /path/to/stanford_cars --epochs 1000 --dist-eval --lr 0.0001 --weight-decay 1e-4 --clip-grad 1 --warmup-epochs 5 --finetune /path/to/model 

License

MIT License

Citation

If you find our work useful in your research, please consider citing:

@article{rao2021global,
  title={Global Filter Networks for Image Classification},
  author={Rao, Yongming and Zhao, Wenliang and Zhu, Zheng and Lu, Jiwen and Zhou, Jie},
  journal={arXiv preprint arXiv:2107.00645},
  year={2021}
}
Mask-invariant Face Recognition through Template-level Knowledge Distillation

Mask-invariant Face Recognition through Template-level Knowledge Distillation This is the official repository of "Mask-invariant Face Recognition thro

Fadi Boutros 35 Dec 06, 2022
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn?

Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn? Repository Structure: DSAN |└───amazon |    └── dataset (Amazo

DMIRLAB 17 Jan 04, 2023
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

OpenMMLab 899 Jan 02, 2023
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
This repository contains small projects related to Neural Networks and Deep Learning in general.

ILearnDeepLearning.py Description People say that nothing develops and teaches you like getting your hands dirty. This repository contains small proje

Piotr Skalski 1.2k Dec 22, 2022
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
My personal code and solution to the Synacor Challenge from 2012 OSCON.

Synacor OSCON Challenge Solution (2012) This repository contains my code and solution to solve the Synacor OSCON 2012 Challenge. If you are interested

2 Mar 20, 2022
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023
A deep learning library that makes face recognition efficient and effective

Distributed Arcface Training in Pytorch This is a deep learning library that makes face recognition efficient, and effective, which can train tens of

Sajjad Aemmi 10 Nov 23, 2021
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
Byzantine-robust decentralized learning via self-centered clipping

Byzantine-robust decentralized learning via self-centered clipping In this paper, we study the challenging task of Byzantine-robust decentralized trai

EPFL Machine Learning and Optimization Laboratory 4 Aug 27, 2022
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 07, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022