Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Related tags

Deep LearningLIID
Overview

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

This paper has been accepted and early accessed in IEEE TPAMI 2020.

Code contact e-mail: Yu-Huan Wu (wuyuhuan (at) mail(dot)nankai(dot)edu(dot)cn)

Introduction

Weakly supervised semantic instance segmentation with only image-level supervision, instead of relying on expensive pixel-wise masks or bounding box annotations, is an important problem to alleviate the data-hungry nature of deep learning. In this paper, we tackle this challenging problem by aggregating the image-level information of all training images into a large knowledge graph and exploiting semantic relationships from this graph. Specifically, our effort starts with some generic segment-based object proposals (SOP) without category priors. We propose a multiple instance learning (MIL) framework, which can be trained in an end-to-end manner using training images with image-level labels. For each proposal, this MIL framework can simultaneously compute probability distributions and category-aware semantic features, with which we can formulate a large undirected graph. The category of background is also included in this graph to remove the massive noisy object proposals. An optimal multi-way cut of this graph can thus assign a reliable category label to each proposal. The denoised SOP with assigned category labels can be viewed as pseudo instance segmentation of training images, which are used to train fully supervised models. The proposed approach achieves state-of-the-art performance for both weakly supervised instance segmentation and semantic segmentation.

Citations

If you are using the code/model/data provided here in a publication, please consider citing:

@article{liu2020leveraging,
  title={Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation},
  author={Yun Liu and Yu-Huan Wu and Peisong Wen and Yujun Shi and Yu Qiu and Ming-Ming Cheng},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2020},
  doi={10.1109/TPAMI.2020.3023152},
  publisher={IEEE}
}

Requirements

  • Python 3.5, PyTorch 0.4.1, Torchvision 0.2.2.post3, CUDA 9.0
  • Validated on Ubuntu 16.04, NVIDIA TITAN Xp

Testing LIID

  1. Clone the LIID repository

    git clone https://github.com/yun-liu/LIID.git
    
  2. Download the pretrained model of the MIL framework, and put them into $ROOT_DIR folder.

  3. Download the Pascal VOC2012 dataset. Extract the dataset files into $VOC2012_ROOT folder.

  4. Download the segment-based object proposals, and extract the data into $VOC2012_ROOT/proposals/ folder.

  5. Download the compiled binary files, and put the binary files into $ROOT_DIR/cut/multiway_cut/.

  6. Change the path in cut/run.sh to your own project root.

  7. run ./make.sh to build CUDA dependences.

  8. Run python3 gen_proposals.py. Remember to change the voc-root to your own $VOC2012_ROOT. The proposals with labels will be generated in the $ROOT_DIR/proposals folder.

Pretrained Models and data

The pretrained model of the MIL framework can be downloaded here.

The Pascal VOC2012 dataset can be downloaded here or other mirror websites.

S4Net proposals used for testing can be downloaded here.

The 24K simple ImageNet data (including S4Net proposals) can be downloaded here.

MCG proposals can be downloaded here.

Training with Pseudo Labels

For instance segmentation, you can use official or popular public Mask R-CNN projects like mmdetecion, Detectron2, maskrcnn-benchmark, or other popular open-source projects.

For semantic segmentation, you can use official Caffe implementation of deeplab, third-party PyTorch implementation here, or third-party Tensorflow Implementation here.

Precomputed Results

Results of instance segmentation on the Pascal VOC2012 segmentation val split can be downloaded here.

Results of semantic segmentation trained with 10K images, 10K images + 24K simple ImageNet images, 10K images (Res2Net-101) on the Pascal VOC2012 segmentation val split can be downloaded here.

Other Notes

Since it is difficult to install and configure IBM CPLEX, for convenience, we provide the compiled binary file which can run directly. If you desire to get the complete source code for solving the multi-way cut and ensure that there is no commercial use of it, please contact Yu-Huan Wu (wuyuhuan (at) mail(dot)nankai(dot)edu(dot)cn).

Acknowledgment

This code is based on IBM CPLEX. Thanks to the IBM CPLEX academic version.

Owner
Yun Liu
PhD student, Nankai University, China
Yun Liu
Air Pollution Prediction System using Linear Regression and ANN

AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:

Dr Sharnil Pandya, Associate Professor, Symbiosis International University 19 Feb 07, 2022
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
code for our BMVC 2021 paper "HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification"

HCV_IIRC code for our BMVC 2021 paper HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification by Kai Wang, Xialei Li

kai wang 13 Oct 03, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"

GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language

137 Jan 02, 2023
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration

This repo is for the paper: Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration The DAC environment is based on the Dynam

Carola Doerr 1 Aug 19, 2022
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Simon Blanke 422 Jan 04, 2023
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
ArcaneGAN by Alex Spirin

ArcaneGAN by Alex Spirin

Alex 617 Dec 28, 2022
Towards Fine-Grained Reasoning for Fake News Detection

FinerFact This is the PyTorch implementation for the FinerFact model in the AAAI 2022 paper Towards Fine-Grained Reasoning for Fake News Detection (Ar

Ahren_Jin 15 Dec 15, 2022
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022