Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

Overview

C2-Matching (CVPR2021)

Python 3.7 pytorch 1.4.0

This repository contains the implementation of the following paper:

Robust Reference-based Super-Resolution via C2-Matching
Yuming Jiang, Kelvin C.K. Chan, Xintao Wang, Chen Change Loy, Ziwei Liu
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021

[Paper] [Project Page] [WR-SR Dataset]

Overview

overall_structure

Dependencies and Installation

  • Python >= 3.7
  • PyTorch >= 1.4
  • CUDA 10.0 or CUDA 10.1
  • GCC 5.4.0
  1. Clone Repo

    git clone [email protected]:yumingj/C2-Matching.git
  2. Create Conda Environment

    conda create --name c2_matching python=3.7
    conda activate c2_matching
  3. Install Dependencies

    cd C2-Matching
    conda install pytorch=1.4.0 torchvision cudatoolkit=10.0 -c pytorch
    pip install mmcv==0.4.4
    pip install -r requirements.txt
  4. Install MMSR and DCNv2

    python setup.py develop
    cd mmsr/models/archs/DCNv2
    python setup.py build develop

Dataset Preparation

Please refer to Datasets.md for pre-processing and more details.

Get Started

Pretrained Models

Downloading the pretrained models from this link and put them under experiments/pretrained_models folder.

Test

We provide quick test code with the pretrained model.

  1. Modify the paths to dataset and pretrained model in the following yaml files for configuration.

    ./options/test/test_C2_matching.yml
    ./options/test/test_C2_matching_mse.yml
  2. Run test code for models trained using GAN loss.

    python mmsr/test.py -opt "options/test/test_C2_matching.yml"

    Check out the results in ./results.

  3. Run test code for models trained using only reconstruction loss.

    python mmsr/test.py -opt "options/test/test_C2_matching_mse.yml"

    Check out the results in in ./results

Train

All logging files in the training process, e.g., log message, checkpoints, and snapshots, will be saved to ./experiments and ./tb_logger directory.

  1. Modify the paths to dataset in the following yaml files for configuration.

    ./options/train/stage1_teacher_contras_network.yml
    ./options/train/stage2_student_contras_network.yml
    ./options/train/stage3_restoration_gan.yml
  2. Stage 1: Train teacher contrastive network.

    python mmsr/train.py -opt "options/train/stage1_teacher_contras_network.yml"
  3. Stage 2: Train student contrastive network.

    # add the path to *pretrain_model_teacher* in the following yaml
    # the path to *pretrain_model_teacher* is the model obtained in stage1
    ./options/train/stage2_student_contras_network.yml
    python mmsr/train.py -opt "options/train/stage2_student_contras_network.yml"
  4. Stage 3: Train restoration network.

    # add the path to *pretrain_model_feature_extractor* in the following yaml
    # the path to *pretrain_model_feature_extractor* is the model obtained in stage2
    ./options/train/stage3_restoration_gan.yml
    python mmsr/train.py -opt "options/train/stage3_restoration_gan.yml"
    
    # if you wish to train the restoration network with only mse loss
    # prepare the dataset path and pretrained model path in the following yaml
    ./options/train/stage3_restoration_mse.yml
    python mmsr/train.py -opt "options/train/stage3_restoration_mse.yml"

Visual Results

For more results on the benchmarks, you can directly download our C2-Matching results from here.

result

Webly-Reference SR Dataset

Check out our Webly-Reference (WR-SR) SR Dataset through this link! We also provide the baseline results for a quick comparison in this link.

Webly-Reference SR dataset is a test dataset for evaluating Ref-SR methods. It has the following advantages:

  • Collected in a more realistic way: Reference images are searched using Google Image.
  • More diverse than previous datasets.

result

Citaion

If you find our repo useful for your research, please consider citing our paper:

@InProceedings{jiang2021c2matching,
   author = {Yuming Jiang and Kelvin C.K. Chan and Xintao Wang and Chen Change Loy and Ziwei Liu},
   title = {Robust Reference-based Super-Resolution via C2-Matching},
   booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
   year = {2021}
}

License and Acknowledgement

This project is open sourced under MIT license. The code framework is mainly modified from BasicSR and MMSR (Now reorganized as MMEditing). Please refer to the original repo for more usage and documents.

Contact

If you have any question, please feel free to contact us via [email protected].

Owner
Yuming Jiang
[email protected], Ph.D. Student
Yuming Jiang
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
A spherical CNN for weather forecasting

DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew

DeepSphere 47 Dec 25, 2022
MTA:SA Server Configer.

MTAConfiger MTA:SA Server Configer. Hi 👋 , I'm Alireza A Python Developer Boy 🔭 I’m currently working on my C# projects 🌱 I’m currently Learning CS

3 Jun 07, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
yufan 81 Dec 08, 2022
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data

Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond

Insight Data Science Lab 64 Nov 15, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
A curated list of long-tailed recognition resources.

Awesome Long-tailed Recognition A curated list of long-tailed recognition and related resources. Please feel free to pull requests or open an issue to

Zhiwei ZHANG 542 Jan 01, 2023
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar

Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen

2 Aug 23, 2022
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation This repository contains the source code of our paper, ESPNet (acc

Sachin Mehta 515 Dec 13, 2022
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the

SNU ADSL 0 Feb 07, 2022